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On Convergence of Random Series

Iddo Ben-Ari

Math Club, Feb 24 2020
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Outline

1. Review: Numerical series

2. Random Series

3. Two Theorems By Kolmogorov

4. Examples

5. Strong Law of Large Numbers
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Numerical Series

Series
I Sequence a1, a2, . . . real numbers.

I Series, the “infinite sum” denoted by “
∑∞

m=1 am”, with terms a1, a2, . . . .

Convergence
Infinite sum = Limits of finite sums.

I Sequence of partial sums Sn =
∑n

m=1 am.

I Series converges ⇔ limn→∞ Sn exists as a real number, the sum of the sequence.

I Diverges otherwise.

Examples

I Geometric, an = qn−1.

I Harmonic, an = 1
n

.

I Alternating harmonic, an = (−1)n+1

n
.

I Other? Taylor series, and more fancy stuff.

No closed form in general. Sometimes can get estimates, or, more generally can
determine if converges or not.
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Convergence tests
Tools to determine convergence. Many... Here are a few.

Theorem 1 (Comparison)
Suppose

∑∞
n=1 bn is converges and |an| < bn. Then

∑∞
n=1 an converges.

Theorem 2 (Condensation - substitution)
Suppose an ≥ an+1 ≥ . . . 0. Then

∑∞
n=1 an converges ⇔

∑∞
n=1 2na2n convegres.

Examples

I an = qn−1. Then Sn = 1−qn

1−q
and therefore

∑∞
n=1 an converges ⇔ |q| < 1.

I an = n−p . Then 2na2n = 2n2−pn = (21−p)n = qn. Therefore converges iff p > 1.

I Try: an = 1
n ln(1+n)

.

Theorem 3 (Dirichlet’s test - summation by parts)
Suppose bn ↘ 0 and the sequence (sn : n = 1, 2, . . . ) is bounded. Then∑∞

n=1 bn(sn+1 − sn) converges.

Examples

I Let an = (−1)n+1

n
. Apply with bn = 1

n
and (sn : n = 1, 2, . . . ) = (0, 1, 0, 1, . . . ).

I Try: an = sin n
ln(1+n)

.
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Random Series

What’s the deal?
I We sample an randomly.

I Each realization of the sampling yields a (possibly) different series.

Example

I Toss a fair coin repeatedly.

I Set

Hn =

{
1 n’th toss is H

0 n’th toss is T

I Set an = 2−nHn

I The series is
∞∑
n=1

an =
H1

21
+

H2

22
+

H3

23
+ . . . ,

essentially randomly picking some of the terms of the geometric sequence
(q = 1

2
).

I ⇒ Converges, due to Theorem 1.

I But the sum can be anywhere between 0 (0 = H1 = H2 = . . . ) and 1
(1 = H1 = H2 = . . . ).
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The series as a Random Variable

Discussion

I Our random series
∞∑
n=1

Hn

2n
always converges.

I Estimating its sum? Nothing beyond the trivial bounds 0 and 1.

I Enter probability.

Probabilistic viewpoint

I Switch to a “statistical” perspective.

I Though we don’t know what the outcome of the first n tosses will be, we do
know all 2n outcomes have the same probability of appearing.

I So, at least theoretically, we can find the probability that the sum lies some
interval.

I What’s the probability that the sum will be in the interval [0, 1/2)? In the
interval [0, 1/4]? Equal to 3

4
? Between two dyadic numbers?

Bottom line
1. Consider the sum as a function of the “random”realization - an object known as

a random variable, and

2. Look at the probability this random variable lies an any interval - the distribution
of the RV.
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Simulations

Discussion
I The histogram is a bit noisy, so I added a graph of the corresponding distribution

function.

I What is your conclusion?

I Indeed, the distribution of the series
∑∞

n=1
Hn
2n

is uniform on [0, 1].

I This gives a bridge between discrete RVs and continuous RVs. Every RV can be
generated from an infinite sequence of fair coin tosses.
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More simulations

An interesting example

I Let’s change from
∞∑
n=1

Hn

2n
to
∞∑
n=1

2Hn

3n
.

I The 2 in numerator to make sure we cover the same range of [0, 1]
(
∑∞

n=1
1
3

= 1
2

).

I What do you think?

Discussion
I Here the histogram is far from smooth, and again, the picture is much clearer if

we look at the empirical CDF.

I The CDF of this RV is the Cantor function.

I This is an example of a RV which is continuous, but has no density.
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Other random series?

Recall

I The series
∞∑
n=1

1

n
diverges.

I Yet, the alternating signs series
∞∑
n=1

(−1)n+1

n
converges.

A random “version”
I Same fair coin, same Hn

I Form the series
∞∑
n=1

(−1)Hn

n
.

I Much tougher than our previous case.

I Diverges/converges for some “freak” realizations, but what happens in the
“bulk”?
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Some framework

Independent RVs
The RVs X1,X2, . . . are independent if information on any of them does not alter the
distribution of the other.

Examples

I The RVs H1,H2, . . . from our examples, are independent.

I f1(X1), f2(X2), . . . where X1,X2, . . . are independent and f1, f2, . . . are functions.

I Partial sums X1 = H1,X2 = H1 + H2, . . . are not independent.If X2 = 2, then
necessarily X1 = 1, although P(X1 = 1) = 1

2
.

Events
An event is a collection of realizations.

1. All but finitely many tosses are H.

2. Any finite pattern appears infinitely many times.

3. The proportion of H in first n tosses converges to the constant c.

4. The random series converges.

Almost sure
I An event holds almost surely if its probability is 1 (“the bulk”).

I It does not necessarily mean the event contains all realizations!
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0-1

Theorem 4 (Kolmogorov’s 0-1)
Let X = (X1,X2, . . . ) be independent. Any event stated in terms of the sequence
(X1,X2, . . . ), not affected by the value of any of the Xn’s, has probability 0 or 1.

Example

I Sounds weird?

I All examples from the last slide are of this type!

I In particular, if X = (X1,X2, . . . ) are independent, then the series

∞∑
n=1

Xn

bn

either converges a.s. or diverges a.s. Whichever alternative holds? We have a
theorem for that too.

How to prove? Show that any such event is independent of itself.
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3 Series

Theorem 5 (Kolmogorov’s Three Series Theorem)
Let Y = (Y1,Y2, . . . ) be independent. Let

Zn =

{
Yn |Yn| ≤ 1

0 otherwise

Then the series
∞∑
n=1

Yn converges a.s. if and only if all of the following conditions hold:

1.
∑∞

n=1 P(|Yn| > 1) <∞ (large finitely otfen)

2.
∑∞

n=1 E [Zn] <∞ (expectation of partial sums)

3.
∑∞

n=1 E [(Zn − E [Zn])2] <∞ (variance of partial sums)

Application

Consider the series
∑∞

n=1

(−1)Hn

n︸ ︷︷ ︸
=Yn

.

I |Yn| ≤ 1 ⇒ Zn = Yn and 1 X

I E [Zn] = 0, ⇒ 2 X

I E [Z2
n ] = 1

n2 ⇒ 3 X

Conclusion: converges a.s.

Other proofs? This Math Stack Exchange post.

https://math.stackexchange.com/questions/2785132/convergence-of-the-random-harmonic-series-sum-n-1-infty-fracx-nn
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Generalization

Random p-harmonic

I Reminder:
∞∑
n=1

(−1)n

np
converges for all p > 0 (Theorem 3).

I What about
∞∑
n=1

(−1)Hn

np
(∗)

I Conditions 1,2 in Theorem 5 trivially hold, with Zn = Yn.

I Check condition 3: E [Z2
n ] =

1

n2p
.

Corollary 1

(∗) converges a.s. if p >
1

2
, (∗) diverges a.s. if p ≤

1

2
.
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Simulations
Let’s look at simulations for the random harmonic series.

I Much nicer one on poster.

I More on the distribution? Read Byron
Schmuland, Random Harmonic Series

What about other values of p?

http://www.stat.ualberta.ca/people/schmu/preprints/rhs.pdf
http://www.stat.ualberta.ca/people/schmu/preprints/rhs.pdf
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Random L-functions1, 1/2

Construction
I Let H1 = 1.

I For prime p, define Hp as before

I Extend to all natural numbers through the formula Hnm = Hn + Hm (you can do
this mod 2).

I Example: Hpn = nHp , H6 = H2 + H3, etc. Define

L(s) =
∞∑
n=1

(−1)Hn

ns
(∗∗)

Almost the same as (∗), but here Hn are not independent! H2 determines H2n ,
etc.

Corollary 2

(∗∗) converges a.s. if s >
1

2
.

1From Robert Hugh’s lecture

http://www.math.stonybrook.edu/~rdhough/mat639-spring17/lectures/lecture22.pdf
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Random L-functions, 2/2

Proof of Corollary 2
Key idea: bring this to the form of Theorem 5.

I By prime factorization,

∞∑
n=1

1

ns
=

∏
p prime

(1 +
1

ps
+

1

p2s
+ . . . ) =

∏
p prime

(1−
1

ps
)−1,

Side note: can you see why
∑

p prime
1
ps

converges if and only if s > 1?
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Random L-functions, 2/2

Proof of Corollary 2
Key idea: bring this to the form of Theorem 5.

I Because n→ (−1)Hn is multiplicative,

∞∑
n=1

(−1)Hn

ns
=

∏
p prime

(1 +
(−1)Hp

ps
+

(−1)2Hp

p2s
+ . . . )

=
∏

p prime

(1−
(−1)Hp

ps
)−1

= exp

− ∑
p prime

ln(1−
(−1)Hp

ps
)
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I Use Taylor expansion − ln(1− x) = x + x2/2 + . . . , to recover

∑
p prime

(−1)Hp

ps︸ ︷︷ ︸
(I )

+
1

2p2s
+ . . .︸ ︷︷ ︸

(II )
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Proof of Corollary 2
Key idea: bring this to the form of Theorem 5.

I Use Taylor expansion − ln(1− x) = x + x2/2 + . . . , to recover

∑
p prime

(−1)Hp

ps︸ ︷︷ ︸
(I )

+
1

2p2s
+ . . .︸ ︷︷ ︸

(II )

I So... when s > 1
2

• (II ) converges (we mentioned earlier this slide).
• (I ) converges a.s., similarly to Corollary 1. �
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Simulations

You’re probably curios, so here it is.

Discussion
I Very different from the distribution of the random harmonic series.

I Why positive?
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Strong Law of Large Numbers

With the aid of the all-mighty Kronecker’s Lemma one can use Theorem 5 to give an
easy proof the SLLN, generalizations, and analogous results.

Theorem 6 (Strong Law of Large Numbers)
Let X1,X2, . . . be independent and identically distributed with finite expectation µ.
Let Sn = X1 + · · ·+ Xn. Then

lim
n→∞

Sn

n
→ µ a.s.

Discussion
In MATH3160 we usually cover the Weak Law of Large Numbers:

I The WLLN claims the the difference between the empirical mean Sn/n and µ is
“large” with asymptotically vanishing probability:

lim
n→∞

P(|
Sn

n
− µ| > ε) = 0.

There is no statement on actual convergence of the empirical means.

I The proof you usually see is based on Chebychev’s inequality and assumes finite
second moment.



19/20

Proof of Theorem 6

Lemma 7 (Kronecker’s Lemma: summation by parts)
Suppose that

I 0 < a1 < a2 < . . . with limn→∞ an =∞; and

I
∑∞

n=1
xn
an

converges.

then

lim
N→∞

1

aN

N∑
n=1

xn = 0.

Now for the proof.

I WLOG, assume µ = 0.

I Apply Theorem 5 to the series Yn = Xn/n to conclude that
∑∞

n=1
Xn
n

converges
a.s.

I Apply Kronecker’s lemma with xn = Xn and an = n, to conclude that

SN

N
=

∑N
n=1 Xn

N
→ 0 a.s.

�
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Done. Thank you.


