Volune of Balls

- We will cousder balls of raohis $r=1$ centered at the oligin.
- in dimension $d=2 \quad B_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\} \leq \mathbb{R}^{2}$ subser of the plane

$$
d=3 \quad B_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad x^{2}+y^{2}+z^{2} \leq 1\right\} \subseteq \mathbb{R}^{3}
$$

Sometling maybe you have mever Hougler a boue: $\quad d=1$?

$$
d=1 \quad D_{1}=\left\{x \in \mathbb{R}: x^{2} \leq 1\right\}=[-1,1] \quad 1 \text {-duluz oual ball }
$$

-What's an u-duren soreal ball?
it's the subsee of \mathbb{R}^{μ} (μ-deir space) defued as

$$
B_{\mu}==\left\{\left(x_{1},-x_{\mu}\right) \in \mathbb{R}^{\mu}: x_{1}^{2}+x_{2}^{2}+\ldots+x_{\mu}^{2} \leq 1\right\}
$$

Q what is the "size" (lengtl/arca/voluve) of B_{μ} ?

- $\mu=1 \quad \operatorname{size}\left(B_{1}\right)=l([-1,1])=2$
- $\mu=2 \operatorname{size}\left(B_{2}\right)=\operatorname{Area}(D i s k)=\pi r^{2}=\pi>2=\operatorname{size}\left(B_{1}\right)$
- $\mu=3 \quad \operatorname{size}\left(B_{3}\right)=\operatorname{Volure}($ Splese $)=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi>\pi=\operatorname{size}\left(B_{2}\right)$

Q: Dos the size increase with μ ?
To answer this question, we deoned find an acteruative way of couputeing size $\left(B_{2}\right)$ and size $\left(B_{3}\right)$.

Q how can cie find area B_{2} ?
A ealc 2 (or 3) if $A \subseteq \mathbb{R}^{2}$ is a subset of \mathbb{R}^{2}, then :

$$
\operatorname{Arca}(A)=\iint_{A} 1 d A
$$

So if we wanuer fuid Area $\left(B_{2}\right)$ we should seer-up a double uTegral aver B_{2}.
we have 2 optious carterian coordeinates: (1) messy

- polar coorduazes

to fuid a pocit in the $x y$-plane you coned aiteer fand (x, y), thenk of than as components of thes vecor, or (r, θ) thenk of them as anyle vector/x-axis and leupth of the vecior
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \quad \theta\right.$ in $[0,2 \pi) \quad r \in[0,1] \quad$ is a paracuereratuon of B_{2}
Area $\left(B_{2}\right)=\iint_{B_{2}} 1 d A=\int_{0}^{2 \pi} \int_{0}^{1} 1 \cdot$ Jacobuau drdo $=\int_{0}^{2 \pi} \int_{0}^{1} r d r d \theta=\left.2 \pi \cdot \frac{1}{2} r^{2}\right|_{0} ^{1}=\pi$ polar coordenates: $J=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=r$

Jacobiau =? thuk about the map $(x, y) \mapsto(\theta, p)=\left(\operatorname{arctg}\left(\frac{y}{x}\right) ; \sqrt{x^{2}+y^{2}}\right)$ $\{\underset{\substack{\text { square } \\ \text { scuall } \\ \sim}}{\square}$
it measues "how destorred is the "new spuose" compore to the oregchal squere"

Why you slewed appreciate this approach? it's eaxy to peueralire!

$$
\text { volue }\left(B_{3}\right)=\iiint_{B_{3}} 1 d v \quad \text { ealc } 3
$$

B_{3} is a 3-dun ball, we coun paramerzize it usug spleezcal coordenàies!

$$
\begin{aligned}
& \begin{array}{l}
\left\{\left.\begin{array}{ll}
x=r \cos \theta \sin \phi & r \in[0,1], \theta \in[0, \\
y=r \sin \theta \sin \phi & \text { is a parauerziz } \\
z=r \cos \theta & \\
\text { Jacosan }=\left\lvert\, \begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta}
\end{array} \frac{\frac{\partial z}{\partial \phi}}{\partial \phi}\right.
\end{array} \right\rvert\,=r^{2} \sin \phi\right.
\end{array} \\
& \operatorname{Vol}\left(B_{3}\right)=\iiint_{B_{3}} 1 d v=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} 1 \cdot J a c o h d \phi d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi}-\left.r^{2} \cos \phi\right|_{\phi=0} ^{\phi=\pi} d \theta d r= \\
& =\int_{0}^{1} \int_{0}^{2 \pi} 2 r^{2} d \theta d r=\left.4 \pi \cdot \frac{1}{3} r^{3}\right|_{0} ^{1}=\frac{4}{3} \pi
\end{aligned}
$$

Back to ar oripual Q: size (Be)?
Heese 2 exauples augest us to: paranerzite Bu; set-up and valuate an integral.
$B_{2}: \quad B_{3} \quad B_{4}$

$$
\left\{\begin{array} { l }
{ x _ { 1 } = r \operatorname { c o s } \theta _ { 1 } } \\
{ x _ { 2 } = r \operatorname { s i n } \theta _ { 1 } }
\end{array} \quad \left\{\begin{array} { l }
{ x _ { 1 } = r \operatorname { c o s } \theta _ { 1 } \operatorname { s i n } \theta _ { 2 } } \\
{ x _ { 2 } = r \operatorname { s i n } \theta _ { 1 } \operatorname { s i n } \theta _ { 2 } } \\
{ x _ { 3 } = r \operatorname { c o s } \theta _ { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x_{1}=r \cos \theta_{1} \sin \theta_{2} \sin \theta_{3} \\
x_{2}=r \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \\
x_{3}=r \cos \theta_{2} \sin \theta_{3} \\
x_{4}=r \cos \theta_{3}
\end{array}\right.\right.\right.
$$

Soure eoururuts about the ur eaupg of these anglese

$\theta_{2}(=\phi)$ tells you how far you are from the $x_{3}(=z)$ axis.
for a fix θ_{2}, we basicolley have a circle si the
$x_{3}=r \cos \theta_{2}$ plaue of radurs $r \sin \theta_{2}$

we cam usa polar coorolunates $=r \cos \theta_{2}$ to paraundezze thes airde:

$$
\begin{aligned}
& x_{1}=\left(r \sin \theta_{2}\right) \cos \theta_{1} \\
& x_{2}=\left(r \sin \theta_{2}\right) \sin \theta_{1} \\
& x_{3}=r \cos \theta_{2}
\end{aligned}
$$

whide are precisely the spleen. cosord.
thuk of a 3-dui-bell as reede of a lot of 2-due. desks oue on top of the other, with raduis alaygeng accorduy to the hergher.

- eomment so it mekes sense fleai $\theta \in[0,2 \pi)$, whle $\phi \in[0, \pi]$

How sleued we then about the parounetzzatide of B4?
θ_{3} says how far we ase froce the x_{4}-axis.
At heiphe rosos ${ }^{3}$, ussead of a desk of radens risin θ_{3}, you uow have a sphese of raduis rscir θ_{3}.
thuk of B_{4} as a lot of 3-du bolls ane ou top of the dbler, witle radeìs changug.

So a way of paramerbzaing B_{ν} is

$$
\begin{aligned}
& \int x_{1}=r \cos \theta_{1} \sin \theta_{2} \ldots \ldots . . . \cdot \sin \theta_{\mu-1} \quad \theta_{1} \in[0,2 \pi) \\
& x_{2}=r \sin \theta_{1} \sin \theta_{2} \ldots \sin \theta_{2-1} \\
& \theta_{j} \in[0, \pi] \quad j=2,-\mu-1 \\
& r \in[0,1]
\end{aligned}
$$

what about' the jacob au? polar $\left(B_{2}\right) \quad y=r=r^{2-1} \cdot \sin \theta^{2-2}$ spleacenl (B_{3}) $j=r^{2} \sin \phi=r^{3-1} \cdot \sin ^{3-2} \theta_{3-1} \cdot \sin ^{3-3} \theta_{3-2}$ so in general we have:

$$
\begin{aligned}
& \text { Jacobian }=r^{u-1} \cdot \sin ^{\mu-2}\left(\theta_{\mu-1}\right) \cdot \sin ^{u-3}\left(\theta_{\mu-2}\right) \cdots \sin \left(\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1} r^{\mu-1} d r \cdot \int_{0}^{\pi} \sin ^{\mu-2}\left(\theta_{\mu-1}\right) d \theta_{\mu-1} \cdots \int_{0}^{\pi} \sin \left(\theta_{2}\right) d \theta_{2} \cdot \int_{0}^{2 \pi} 1 \cdot d \theta_{1}
\end{aligned}
$$

let us set $I_{\partial}=\int_{0}^{\pi} \sin ^{j}(x) d x \quad \partial \in \mathbb{N}_{0}$
We have: \quad size $\left(B_{\mu}\right)=\frac{2 \pi}{\mu} \cdot I_{1} \cdot I_{2} \cdots I_{\mu-2}$

Now we have to do some computations

$$
I_{d}=\int_{0}^{\pi} \sin ^{\partial}(x) d x=\int_{0}^{\pi} \sin ^{d-1}(x) \cdot \sin (x) d x=\frac{d-1}{\partial} \int_{0}^{\pi} \sin ^{d-2}(x) d x
$$

that is, $\left\{I_{\partial}=\frac{\partial-1}{\partial} I_{\partial-2}\right\} \geqslant 2$

$$
\begin{array}{ll}
I_{0}=\int_{0}^{\pi} \operatorname{sui}(x)^{0} d x=\int_{0}^{\pi} 1 d x=\pi & I_{1}=\int_{0}^{\pi} \operatorname{sun}^{1} 1 d x=2 \\
I_{2}=\frac{2-1}{2} I_{0}=\frac{1}{2} I_{0}=\frac{1}{2} \pi & I_{3}=\frac{3-1}{3} I_{1}=\frac{4}{3} \\
I_{4}=\frac{4-1}{4} I_{2}=\frac{3}{4} \frac{1}{2} \pi=\frac{3}{8} \pi & I_{5}=\frac{5-1}{5} I_{3}=\frac{4}{5} \cdot \frac{4}{3}=\frac{16}{15}
\end{array}
$$

So the voluse of the heder dunenzional uni ball is

$$
\begin{aligned}
& \operatorname{Size}\left(B_{3}\right)=\frac{2 \pi}{3} I_{1}=\frac{4}{3} \pi \quad \operatorname{Size}\left(B_{4}\right)=\frac{2 \pi}{4} \cdot I_{1} \cdot I_{2}=\frac{\pi}{2} \cdot 2 \cdot \frac{1}{2} \pi=\frac{\pi^{2}}{2} \\
& \operatorname{Size}\left(B_{5}\right)=\frac{2 \pi}{5} I_{1} I_{2} I_{3}=\frac{2 \pi}{5} \cdot 2 \cdot \frac{1}{2} \pi \frac{4}{3}=\frac{8}{15} \pi^{2} \\
& \operatorname{size}\left(B_{6}\right)=\frac{2 \pi}{6} I_{1}-I_{4}=\frac{\pi}{3} \cdot 2 \cdot \frac{1}{2} \pi \cdot \frac{4}{2} \cdot \frac{3}{8_{2}} \pi=\frac{1}{6} \pi^{3}
\end{aligned}
$$

Of eoure oue can whie down a general formla for Iu.

$$
I_{2 k}=\frac{\pi(2 k-1)!}{2^{2 k-1} k!(k-1)!} \quad I_{2 k-1}=\frac{2^{2 k-1}(k-1)!^{2}}{(2 k-1)!}
$$

For wen-durenzioual balls the formla is unveh encer and is given by:

$$
\operatorname{size}\left(B_{2 m}\right)=\frac{\pi^{\mu n}}{\mu!}
$$

$1^{\text {sT }}$ punch lue

- weird thugs happenj eike $\lim _{m \rightarrow \infty} \operatorname{size}\left(B_{2 m}\right)=\lim _{\mu \rightarrow \infty} \frac{\pi^{\mu}}{\mu!}=0$ in higler duneusons, Hee ball " coutains less velure".
the mui ball maxicuizes the volue when $u=5$
\rightarrow in geueral, He durenar that maxwizes the volure depends on the raduis.; e.g. $r=2 \Rightarrow$ maxul at $\mu=24$

I houestly have μ_{0} intvitiou wly it happars at $u=5$.

Bites of w-direnaronal spaces
in \mathbb{R}^{μ} wei ball = set of polis whose distance frow the center is $=1$.
$B_{R}^{\mathbb{R}^{\mu}}(0)=\left\{x \in \mathbb{R}^{\mu}: d(x ; 0) \leq R\right\}=$ ball, rad $=R$, cuitered at the dejpin
$B_{R}^{\mathbb{R}^{\mu}}(y)=\left\{x \in \mathbb{R}^{\mu}: \quad d(x, y) \leqslant R\right\}=$ ball, rad $=R$, centered at y
of course $\operatorname{size}\left(B_{1}^{1 R^{\mu}}(0)\right)=\operatorname{size}\left(B_{1}^{1 R^{\mu}}(y)\right) . \Rightarrow \frac{\operatorname{size}\left(B_{1}^{10^{\mu}}(y)\right)}{\operatorname{size}\left(B_{1}^{1 R^{4}}(0)\right)}=1$
$2^{\text {nd }}$ pancle line
(x) this is the duly on $\mathbb{R}^{\mu} \quad$ (well, on faerie den en s oral linear spaces)
eau you think about an so-dur space?
$W:=\{f: T 0,1] \rightarrow \mathbb{R}$ continuous and $f(0)=0\}$

- $f, g \in W, a, b \in \mathbb{R} \Rightarrow a f+b g \in W$
eg. $f(x)=4 \sin x$

$$
f(x)=1-\cos x
$$

- $f \equiv \theta \in W$
how can we defrie a distance between two" points" $f, g \in W$?

$$
\text { in } \mathbb{R}^{2}: d_{\mathbb{R}^{2}}(\underline{x} ; \underline{y})=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right)^{1 / 2}
$$

$d(f, g):=\max _{0 \leq x \leq 1}|f(x)-g(x)|$ it's a distance.
So now we can talk about balls in W :

$$
B_{l}(0)=\{f \in W: d(f, 0) \leq 1\}=\left\{f:[01] \rightarrow \mathbb{R} \text { cot } f(0)=0 \max _{0 \leq x \leq 1}|f(x)| \leq 1\right\}
$$

mit ball catered at the "origui", aka zero-function.
$B_{1}(g)=\left\{f \in W: \max _{0 \leq x \leq 1}|f(x)-g(x)| \leq 1\right\}$ vet ball couriered at g
Can we visualize "points" in $B_{1}(g)$ "?

a "posit" in Big h) is a contender function f with $f(0)=0$ and whose graph is entirely beiween those 2 blue curves
is the park curve ai Big)? rose

What about tranzlatid invariance?
Recall that in \mathbb{R}^{μ} we have:

$$
\operatorname{size}\left(B_{1}^{\mathbb{R e}^{\mu}}(0)\right)=\operatorname{size}\left(B_{1}^{\operatorname{Re}^{\mu}}(y)\right) \text {. }
$$

Assume you have a way of measuring rite of balls in W.
prop Assume that, $\nabla R>0, \forall f, g \in W$

$$
\operatorname{size}\left(B_{R}(f)\right)=\operatorname{size}\left(B_{R}(g)\right) \text {. }
$$

if $\operatorname{size}\left(B_{R}(0)\right)<\infty \quad \Rightarrow \operatorname{size}\left(B_{R}(0)\right)=0$

Moral Assume you have a "way of measuring" subsets in W. assure that the site of a ser and its translation are the solve.
then the size of a ball is either 0 or ∞ !
$~$ So if you want a un Tier al way of unearuring balls in W; you court have translation uvariou ce li
proof give the idea. just draw something like *)
Since W is infare dimensional, we eau find ∞-many paircrise-desjoui balls contained in $B_{R}(0)$, say $B_{r}\left(f_{\mu}\right)$ for souse $\left\{f_{\mu}\right\}_{\mu} \subset W$.

How is this possible?
in \mathbb{R}^{2}
$-$

the 4 purple balls all have the same radius and are centered an the x-and y-axis.

In ∞-dir. space, you might think like having w-may axis \Rightarrow so you have so-may desjour balls eouramed in $B_{R}(0)$.
by our assumption size $\left(B_{r}\left(f_{u}\right)\right)=\operatorname{size}\left(B_{r}(0)\right)=: c<\infty$ furire

- each $B_{r}\left(f_{u}\right) \subseteq B_{R}(0) \Rightarrow$ so is the union

$$
\begin{gathered}
\bigcup_{u} B_{r}\left(f_{u}\right) \subset B_{R}(0) \\
\operatorname{size}\left(\bigcup_{\mu} B_{r}\left(f_{u}\right)\right) \leqslant \operatorname{size}\left(B_{R}(0)\right)
\end{gathered}
$$

Q if two ball are desjour, then

$$
\begin{aligned}
& \quad \operatorname{size}\left(B_{r}\left(a_{1}\right) \cup B_{r}\left(a_{2}\right)\right) ? \ldots \sum_{i=1}^{2} \operatorname{size}\left(B_{r}\left(a_{i}\right)\right) \\
& \sum_{\mu=1}^{\infty} \operatorname{size}\left(B_{r}\left(f_{u}\right)\right) \leq \operatorname{size}\left(B_{R}(0)\right)<\infty
\end{aligned}
$$

by asscuption, all these sizes are the same

$$
\sum_{n=1}^{\infty} c \leqslant \operatorname{size}\left(B_{R}(0)\right)<\infty
$$

Q is this possible? \sim, yes: iff $e=0$

- Consequences: since size $\left(B_{R}(0)\right) \neq \operatorname{size}\left(B_{R}(f)\right)$
the quotient is not 1, so one muggle ask what the value of

$$
\begin{aligned}
& \frac{\operatorname{size}\left(B_{R}(f)\right)}{\operatorname{size}\left(B_{R}(0)\right)} \\
\approx & e^{-\frac{\lambda}{R^{2}}} \cdot e^{-\frac{1}{2} \int_{0}^{1}\left(f^{\prime}\right)^{2} d x}
\end{aligned}
$$

at least for small R.

If socuede arts. λ is the scales $\neq 0$ apenalue of $\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$ on $[0,1]$.

- So, what do 1 study? For keith: thess eughe be toes advance, but it could be interesting for juidors/seviors
$G=a$ vice group
if you have taken Linear Algebra, you cow then of G as being the ser of orthogonal enatuces, or upper-tiangular-mathkes. etc "algebra" / geometry

$$
W_{i}=\{f:[0,1] \rightarrow G \underset{\text { topology }}{\operatorname{coutivovs}} f(0)=0\}
$$

- W is our so-denenzoval space \sim funceiovel analysis.
- how can you measure size of balls in W ? simplest way I know: Browaiden reaction probability.

What do I like abocè what I do:
geometry /algebra $\sim \sim$ analysis / probability

I really eke when different fields of mate combine with each other.

