Tom Roby

Combinatorial Triangles
Some sequences are some important that we recongize them instantly: squares, primes, triangular numbers, Fibonacci numbers, Catalan numbers, etc. Some of these are doublyindexed, which makes them more easily described and understood as combinatorial triangles. We'll try look at about six (!) examples in less than 60 minutes.

1. These triangles typically represent disaggregated data, i.e., their row or column sums are frequently of interest.
2. These numbers frequently come up as coefficients of simple-to-define polynomials or infinite series.
3. Most have a core combinatorial "story" which can be used to give a nice explanation of a recursion.
4. Many examples come up all the time in applications;
5. Mathematicians frequently rediscover the same sequence in completely different contexts; the OEIS makes it simple to see whether a sequence that comes up in A's work is already known, and perhaps connect A's work to other interesting mathematics.

Pingala-Khayyam-YangHui-Pascal Triangle

Definition 1. Let $\binom{n}{k}$ denote the number of k-element subsets of $[n]:=\{1,2,3, \ldots, n\}$.
This one has perhaps the most obvious recursion of all:

Stirling numbers for set partitions (2nd kind)

Definition 2. $\left\{\begin{array}{l}n \\ k\end{array}\right\}:=\#$ ways to partition $[n]$ into exactly $[k]$ (nonempty) blocks. Read " n subset k "

Stirling numbers for permutations (1st kind)

Definition 3. $\left[\begin{array}{l}n \\ k\end{array}\right]:=\#$ ways to arrange $[n]$ into exactly $[k]$ cycles. Read " n cycle k ".

Sideways Numbers

What happens if we change our recursion to add sideways (and carry from right end to left):

$$
T(n, k)=T(n-1, k-1)+T(n, k-1),
$$

with $T(0,0):=1$, and $T(n, 0):=T(n-1, n-1) ?$

```
                        1
                    1 2
                    2 3
                            3 5
            5
            15}200 27 37 52
                52
                        203
877}108013351657 2066 2589 3263 4140
```


Eulerian Numbers

Definition 4. An ascent of a permutation $w=a_{1} \cdots a_{n}$ is a value $j \in[n-1]$ with $a_{j}<a_{j+1}$. $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle:=\#$ permutations of $[n]$ with exactly k ascents.

```
                        1
            0
                1 1 0
            1 4 1 0
            1
            1 
            1 
                        1
```


Alternating Permutations

Definition 5. Call a permutation $w=a_{1} \cdots a_{n}$ alternating if it satisfies $a_{1}>a_{2}<a_{3}>$ $a_{4}<\cdots$. (w with all inequalities reversed are called reverse alternating.)

$$
E_{n}:=\#\left\{w \in \mathfrak{S}_{n}: w \text { is alternating }\right\} .
$$

$E G: E_{4}=5$, counting 2143, 3142, 3241, 4132, 4231.
Definition 6. Let $E_{n, k}$ denote number of alternating permutations in \mathfrak{S}_{n+1} with first term $k+1$, the Entringer number.

$$
\begin{aligned}
& 1 \\
& 0 \rightarrow 1 \\
& 1 \leftarrow 1 \leftarrow 0 \\
& 0 \rightarrow 1 \rightarrow 2 \rightarrow 2 \\
& 5 \leftarrow 5 \leftarrow 4 \leftarrow 2 \leftarrow 0 \\
& 0 \rightarrow 5 \rightarrow 10 \rightarrow 14 \rightarrow 16 \rightarrow 16 \\
& 61 \leftarrow 61 \leftarrow 56 \leftarrow 46 \leftarrow 32 \leftarrow 16 \leftarrow 0
\end{aligned}
$$

Theorem 7 (André, 1879).

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x=1+1 x+1 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}+5 \frac{x^{4}}{4!}+16 \frac{x^{5}}{5!}+61 \frac{x^{6}}{6!}+272 \frac{x^{7}}{7!}+\ldots
$$

Key to proof is to show combinatorially that $2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k}$ for $n \geq 1$.

References

[BQ03] Arthur T. Benjamin and Jennifer j. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, MAA, 2003.
[GKP94] Ronald Graham, Donald Knuth, \& Oren Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.
[Pet15] T. Kyle Petersen, Eulerian Numbers, Birkhäuser Advanced Texts Basler Lehrbücher, 2015.
[Stan11] Richard P. Stanley, Enumerative Combinatorics, volume 1, 2nd edition, no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011. Slightly different version available at http://math.mit.edu/~rstan/ec/ec1/.
[Stan99] Richard P. Stanley, Enumerative Combinatorics Volume 2, no. 62 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
[Stan15] Richard P. Stanley, Catalan Numbers, Cambridge University Press, 2015.
[Stan10] Richard P. Stanley, "A survey of alternating permutations," Contemporary Mathematics 531 (2010), 165-196. Available at http://www-math.mit.edu/~rstan/ papers/altperm.pdf. See also slides at http://www-math.mit.edu/~rstan/ transparencies/ida.pdf.
[WikiP] Wikipedia entries for Pascal's Triangle and links therein to individual mathematicians.

