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1. Introduction

Numerical estimates for π have been found in records of several ancient civilizations. These
estimates were all based on inscribing and circumscribing regular polygons around a circle
to get upper and lower bounds on the area (and thus upper and lower bounds on π after
dividing the area by the square of the radius). Such estimates are accurate to a few decimal
places. Around 1600, Ludolph van Ceulen gave an estimate for π to 35 decimal places. He
spent many years of his life on this calculation, using a polygon with 262 sides!

With the advent of calculus in the 17-th century, a new approach to the calculation of π
became available: infinite series. For instance, if we integrate

1

1 + t2
= 1− t2 + t4 − t6 + t8 − t10 + · · · , |t| < 1

from t = 0 to t = x when |x| < 1, we find

(1.1) arctanx = x− x3

3
+
x5

5
− x7

7
+
x9

9
− x11

11
+ · · · .

Actually, this is also correct at the boundary point x = 1. Since arctan 1 = π/4, (1.1)
specializes to the formula

(1.2)
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ,

which is due to Leibniz. It expresses π in terms of an alternating sum of the reciprocals
of the odd numbers. However, the series in (1.2) converges much too slowly to be of any
numerical use. For example, truncating the series after 1000 terms and multiplying by 4
gives the approximation π ≈ 3.1405, which is only good to two places after the decimal
point.

There are other formulas for π in terms of arctan values, such as

π

4
= arctan

(
1

2

)
+ arctan

(
1

3

)
= 2 arctan

(
1

3

)
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(
1

7

)
= 4 arctan

(
1

5

)
− arctan

(
1
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)
.

Since the series for arctanx is more rapidly convergent when x is less than 1, these other
series are more useful than (1.2) to get good numerical approximations to π. The last such
calculation before the use of computers was by Shanks in 1873. He claimed to have found π
to 707 places. In the 1940s, the first computer estimate for π revealed that Shanks made a
mistake in the 528-th digit, so all his further calculations were in error!

Our interest here is not to ponder ever more elaborate methods of estimating π, but to
prove something about the structure of this number: it is irrational. That is, π is not the
ratio of two integers. The basic idea is to argue by contradiction. We will show that if π
is rational, we run into a logical error. This is also the principle behind the proof that the
simpler number

√
2 is irrational. However, there is an essential difference between the proof

that
√

2 is irrational and the proof that π is irrational. One can prove
√

2 is irrational using
some simple algebraic manipulations with a hypothetical rational expression for

√
2 to reach

a contradiction. But the irrationality of π does not involve only algebra. It requires calculus.
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(That is, all known proofs of the irrationality of π are based on techniques from analysis.)
Calculus can be used to prove irrationality of other numbers, such as e and rational powers
of e (excluding of course e0 = 1).

The remaining sections are organized as follows. In Section 2, we prove π is irrational
using some calculations with definite integrals. The irrationality of e is proved using infinite
series in Section 3. A general discussion about irrationality proofs is in Section 4, and we
apply those ideas to prove the irrationality of non-zero rational powers of e in Section 5.

2. Irrationality of π

The first serious theoretical result about π was established by Lambert in 1768: π is
irrational. His proof involved an analytic device which is never met in calculus courses:
infinite continued fractions. (A discussion of this work is in [1, pp. 68–78]. Lambert’s proof
for π was actually a result about the tangent function. When r is a non-zero rational where
the tangent function is defined, Lambert proved tan r is irrational. Then, since tan(π/4) = 1
is rational, π must be irrational or we get a contradiction.) The irrationality proof for π we
give here is due to Niven [3] and uses integrals instead of continued fractions.

Theorem 2.1. The number π is irrational.

Proof. For any nice function f(x), a double integration by parts shows∫
f(x) sinx dx = −f(x) cosx+ f ′(x) sinx−

∫
f ′′(x) sinx dx.

Therefore (using sin(0) = 0, cos(0) = 1, sin(π) = 0, and cos(π) = −1),∫ π

0

f(x) sinx dx = (f(0) + f(π))−
∫ π

0

f ′′(x) sinx dx.

In particular, if f(x) is a polynomial of even degree, say 2n, then repeating this calculation
n times gives

(2.1)

∫ π

0

f(x) sinx dx = F (0) + F (π),

where F (x) = f(x)− f ′′(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x).
To prove π is irrational, we will argue by contradiction. Assume π = p/q with non-zero

integers p and q. Of course, since π > 0 we can take p and q positive. We are going to apply
(2.1) to a carefully (and mysteriously!) chosen polynomial f(x) and wind up constructing
an integer which lies between 0 and 1. Of course no such integer exists, so we have a
contradiction and therefore our hypothesis that π is rational is in error: π is irrational.

For any positive integer n, set

(2.2) fn(x) = qn
xn(π − x)n

n!
=
xn(p− qx)n

n!
.

This polynomial depends on n (and on π!). We are going to apply (2.1) to this polynomial
and find a contradiction when n becomes large.

But before working out the consequences of (2.1) for f(x) = fn(x), we note the polynomial
fn(x) has two important properties:

• for 0 < x < π, fn(x) is positive and (when n is large) very small in absolute value,
• all the derivatives of fn(x) at x = 0 and x = π are integers.
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To show the first property is true, the positivity of fn(x) for 0 < x < π is immediate from
its defining formula. To bound |fn(x)| from above when 0 < x < π, note that 0 < π−x < π,
so |x(π − x)| < π2. Therefore

(2.3) |fn(x)| ≤ qn
(
π2n

n!

)
=

(qπ2)n

n!
.

The upper bound tends to 0 as n→∞. In particular, the upper bound is less than 1 when
n gets sufficiently large.

To show the second property is true, we first look at x = 0. The coefficient of xj in fn(x)

is f
(j)
n (0)/j!. At the same time, since fn(x) = xn(p − qx)n/n! and p and q are integers, the

binomial theorem tells us the coefficient of xj can be written as cj/n! for some integer cj.
Therefore

(2.4) f (j)
n (0) =

j!

n!
cj.

Since fn(x) has its lowest degree non-vanishing term in degree n, cj = 0 for j < n, so

f
(j)
n (0) = 0 for j < n. For j ≥ n, j!/n! is an integer, so f

(j)
n (0) is an integer by (2.4).

To see the derivatives of fn(x) at x = π are also integers, we use the identity fn(π − x) =

fn(x). Differentiate both sides j times and set x = 0 to get (−1)jf
(j)
n (π) = f

(j)
n (0) for all j.

Therefore, since the right side is an integer, the left side is an integer too. This concludes
the proof of the two important properties of fn(x).

Now we look at (2.1) when f = fn. Since all derivatives of fn at 0 and π are integers,
the right side of (2.1) is an integer when f = fn (look at the definition of F (x)). Therefore∫ π
0
fn(x) sinx dx is an integer for every n. Since fn(x) and sinx are positive on (0, π), this

integral is a positive integer. However, when n is large, |fn(x) sinx| ≤ |fn(x)| ≤ (qπ2)n/n!
by (2.3). As n → ∞, (qπ2)n/n! → 0. Therefore

∫ π
0
fn(x) sinx dx is a positive integer less

than 1 when n is very large. This is absurd, so we have reached a contradiction. Thus π is
irrational. �

This proof is quite puzzling. How did Niven know to choose those polynomials fn(x) or
to compute that integral and make the estimate?

3. Irrationality of e

We turn now to a proof that e is irrational. This was first established by Euler in 1737
using infinite continued fractions. We will prove the irrationality in a more direct manner,
using infinite series. The idea of this proof is due to Fourier and it is short!

Theorem 3.1. The number e is irrational.

Proof. Write

e = 1 +
1

2!
+

1

3!
+ · · · .

For any n,

e =

(
1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

)
+

(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
=

(
1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

)
+

1

n!

(
1

n+ 1
+

1

(n+ 2)(n+ 1)
+ · · ·

)
.
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The second term in parentheses is positive and bounded above by the geometric series

1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · · = 1

n
.

Therefore

0 < e−
(

1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

)
≤ 1

n · n!
.

Write the sum 1 + 1/2! + · · ·+ 1/n! as a fraction with common denominator n!, say as pn/n!.
Clear the denominator n! to get

(3.1) 0 < n!e− pn ≤
1

n
.

So far everything we have done involves no unproved assumptions. Now we introduce the
rationality assumption. If e is rational, then n!e is an integer when n is large (since any
integer is a factor by n! for large n). But that makes n!e− pn an integer located in the open
interval (0, 1/n), which is absurd. We have a contradiction, so e is irrational. �

4. General Ideas

Now it’s time to think more systematically. The basic principle we need to understand is
that numbers are irrational when they are approximated “too well” by rationals. Of course,
any real number can be approximated arbitrarily closely by a suitable rational number: use
a truncated decimal expansion. For instance, we can approximate

√
2 = 1.41421356... by

(4.1)
14142

10000
= 1.4142,

1414213

1000000
= 1.414213.

With truncated decimals, we achieve close estimates at the expense of rather large denomi-
nators. To see what this is all about, compare the above approximations with

(4.2)
99

70
= 1.41428571...,

1393

985
= 1.41421319...,

where we have achieved just as close an approximation with much smaller denominators
(e.g., the second one is accurate to 6 decimal places with a denominator of only 3 digits).
These rational approximations to

√
2 are, in the sense of denominators, much better than

the ones we find from decimal truncation.
To measure the “quality” of an approximation of a real number α by a rational number

p/q, we should think not about the difference |α− p/q| being small in an absolute sense, but
about the difference being substantially smaller than 1/q (thus tying the error with the size
of the denominator in the approximation). In other words, we want

q

∣∣∣∣α− p

q

∣∣∣∣ = |qα− p|

to be small in an absolute sense.
Measuring the approximation of α by p/q using |qα− p| rather than |α− p/q| admittedly

takes some time getting used to, if you are new to the idea. Consider what it says about our
approximations to

√
2. For example, from (4.1) we have

|10000
√

2− 14142| = .135623, |1000000
√

2− 1414213| = .562373,
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and these are not small when measured against 1/10000 = .0001 or 1/1000000 = .000001.
On the other hand, from the approximations to

√
2 in (4.2) we have

|70
√

2− 99| = .005050, |985
√

2− 1393| = .000358,

which are small when measured against 1/70 = .014285 and 1/985 = .001015. We see vividly
that 99/70 and 1393/985 really should be judged as “good” rational approximations to

√
2

while the decimal truncations are “bad” rational approximations to
√

2.
The importance of this point of view is that it gives us a general strategy for proving

numbers are irrational, as follows.

Theorem 4.1. Let α ∈ R. If there is a sequence of integers pn, qn such that qnα − pn 6= 0
and |qnα− pn| → 0 as n→∞, then α is irrational.

In other words, if α admits a “very good” sequence of rational approximations, then α
must be irrational.

Proof. Since 0 < |qnα− pn| < 1 for large n, by hypothesis, we must have qn 6= 0 for large n.
Therefore, since only large n is what matters, we may change terms at the start and assume
qn 6= 0 for all n.

To prove α is irrational, suppose it is rational: α = a/b, where a and b are integers (with
b 6= 0). Then ∣∣∣∣α− pn

qn

∣∣∣∣ =

∣∣∣∣ab − pn
qn

∣∣∣∣ =

∣∣∣∣qna− pnbbqn

∣∣∣∣ .
Clearing the denominator qn,

|qnα− pn| =
∣∣∣∣qna− pnbb

∣∣∣∣ .
Since this is not zero, the integer qna− pnb is non-zero. Therefore |qna− pnb| ≥ 1, so

|qnα− pn| ≥
1

b
.

This lower bound contradicts |qnα− pn| tending to 0. �

It turns out the condition in Theorem 4.1 is not just sufficient to prove irrationality, but
it is also necessary: if α is irrational then there is such a sequence of integers pn, qn (whose
ratios provide good rational approximations to α). A proof can be found in [2, p. 277].
We will not have any need for the necessity (except maybe for its psychological boost) and
therefore omit the proof.

Of course, to use Theorem 4.1 to prove irrationality of a number α we need to find the
integers pn and qn. For the number e, these integers can be found directly from truncations
to the infinite series for e, as we saw in (3.1). In other words, rather than saying e is irrational
because the proof of Theorem 3.1 shows in the end that rationality of e leads to an integer
between 0 and 1, we can say e is irrational because the proof of Theorem 3.1 exhibits a
sequence of good rational approximations to e. In other words, the proof of Theorem 3.1
can stop at (3.1) and then appeal to Theorem 4.1.

While other powers of e are also irrational, it is not feasible to prove their irrationality
by adapting the proof of Theorem 3.1. For instance, what happens if we try to prove e2

is irrational from taking truncations of the infinite series e2 =
∑

k≥0 2k/k!? Writing the

truncated sum
∑n

k=0 2k/k! in reduced form as, say, an/bn, numerical data suggest bne
2 − an
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does not tend to 0, (As numerical evidence, the value of bne
2 − an at n = 22, 23, and 24 is

roughly .0026, 1.4488, and .3465. Since the corresponding values of bn have 12, 16, and 17
decimal digits, these differences are not small by comparison with 1/bn, so the approximations
an/bn to e2 are not that good.) Thus, these rational approximations to e2 probably won’t
fit the conditions of Theorem 4.1 to let us prove the irrationality of e2.

5. Irrationality of rational powers of e

We want to use Theorem 4.1 to prove the following generalization of the irrationality of e.

Theorem 5.1. For any integer a 6= 0, ea is irrational.

To find good rational approxiations for a particular power of e (good enough, that is,
to establish irrationality), we will not use a particular series expansion, but rather use the
interaction between the exponential function ex and integration. Some of the mysterious
ideas from Niven’s proof of the irrationality of π will show up in this context.

Before we prove Theorem 5.1, we note two immediate corollaries.

Corollary 5.2. When r is a non-zero rational number, er is irrational.

Proof. Write r = a/b with non-zero integers a and b. If er is rational, so is (er)b = ea, but
this contradicts Theorem 5.1. Therefore er is irrational. �

Corollary 5.3. For any positive rational number r 6= 1, ln r is irrational.

Proof. The number ln r is non-zero. If ln r is rational, then Corollary 5.2 tells us eln r is
irrational. But eln r = r is rational. We have a contradiction, so ln r is irrational. �

The proof of Theorem 5.1 will use the following lemma, which tells us how to integrate
e−xf(x) when f(x) is any polynomial.

Lemma 5.4 (Hermite). Let f(x) be a polynomial of degree m ≥ 0. For any number a,∫ a

0

e−xf(x) dx =
m∑
j=0

f (j)(0)− e−a
m∑
j=0

f (j)(a).

Proof. We compute
∫
e−xf(x) dx by integration by parts, taking u = f(x) and dv = e−xdx.

Then du = f ′(x)dx and v = −e−x, so∫
e−xf(x) dx = −e−xf(x) +

∫
e−xf ′(x) dx.

Repeating this process on the new indefinite integral, we eventually obtain∫
e−xf(x) dx = −e−x

m∑
j=0

f (j)(x).

Now evaluate the right side at x = a and x = 0 and subtract. �

Remark 5.5. It is interesting to make a special case of this lemma explicit. When f(x) = xn

(n a positive integer), the lemma says∫ a

0

e−xxn dx = n!− 1

ea

n∑
j=0

n(n− 1) · · · (n− j + 1)an−j.
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Letting a → ∞ (n is fixed), the second term on the right tends to 0, so
∫∞
0
e−xxn dx = n!.

This integral formula for n! is due to Euler.

Now we prove Theorem 5.1.

Proof. We rewrite Hermite’s lemma by multiplying through by ea:

(5.1) ea
∫ a

0

e−xf(x) dx = ea
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(a).

Equation (5.1) is valid for any number a and any polynomial f(x). Let a be a non-zero integer
at which ea is assumed to be rational. We want to use for f(x) a polynomial (actually, a
sequence of polynomials fn(x)) with two properties:

• the left side of (5.1) is non-zero and (when n is large) very small in absolute value,
• all the derivatives of the polynomial at x = 0 and x = a are integers.

Then the right side of (5.1) will have the properties of the differences qnα − pn in Theorem
4.1, with α = ea and the two sums on the right side of (5.1) being pn and qn.

Our choice of f(x) is

(5.2) fn(x) =
xn(x− a)n

n!

where n ≥ 1 is to be determined. (Note the similarity with (2.2) in the proof of the irra-
tionality of π!) In other words, we consider the equation

(5.3) ea
∫ a

0

e−xfn(x) dx = ea
2n∑
j=0

f (j)
n (0)−

2n∑
j=0

f (j)
n (a).

We can see (5.3) is non-zero by looking at the left side. The number a is non-zero and
the integrand e−xfn(x) = e−xxn(x − a)n/n! on the interval (0, a) has constant sign, so the
integral is non-zero. Now we estimate the size of (5.3) by estimating the integral on the left
side. Since ∫ a

0

e−xfn(x) dx = a2n+1

∫ 1

0

e−ay
yn(y − 1)n

n!
dy,

we can bound the left side of (5.3) from above:∣∣∣∣ea ∫ a

0

e−xfn(x) dx

∣∣∣∣ ≤ ea|a|2n+1

n!

∫ 1

0

e−ay dy.

As a function of n, this upper bound is a constant times (|a|2)n/n!. As n→∞, this bound
tends to 0.

To see that, for any n ≥ 1, the derivatives f
(j)
n (0) and f

(j)
n (a) are integers for every j ≥ 0,

first note that the equation fn(a − x) = fn(x) tells us after repeated differentiation that

(−1)jf
(j)
n (a) = f

(j)
n (0). Therefore it suffices to show all the derivatives of fn(x) at x = 0 are

integers. The proof that all f
(j)
n (0) are integers is just like that in the proof of Theorem 2.1, so

the details are left to the reader to check. (The general principle is this: for any polynomial
g(x) which has integer coefficients and is divisible by xn, all derivatives of g(x)/n! at x = 0
are integers.)

The first property of the fn’s tells us that |qnea − pn| is positive and tends to 0 as n →
∞. The second property of the fn’s tells us that the sums pn =

∑2n
j=0 f

(j)
n (a) and qn =
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j=0 f

(j)
n (a) on the right side of (5.3) are integers. Therefore the hypotheses of Theorem 4.1

are met, so ea is irrational. �

What really happened in this proof? We actually wrote down some very good rational
approximations to ea. They came from values of the polynomial

Fn(x) =
2n∑
j=0

f (j)
n (x).

Indeed, Theorem 5.1 tells us Fn(a)/Fn(0) is a “good” rational approximation to ea when n
is large. (The dependence of Fn(x) on a is hidden in the formula for fn(x).) The following
table illustrates this for a = 2, where the entry at n = 1 is pretty bad since F1(0) = 0.

n |Fn(0)e2 − Fn(2)|
1 4
2 1.5562
3 .43775
4 .09631
5 .01739
6 .00266
7 .00035
8 .00004

If we take a = 1, the rational approximations we get for ea = e by this method are different
from the partial sums

∑n
k=0 1/k!.

Although the proofs of Theorems 2.1 and 5.1 are similar in the sense that both used es-
timates on integrals, the proof of Theorem 2.1 did not show π is irrational by exhibiting
a sequence of good rational approximations to π. The proof of Theorem 2.1 was an “inte-
ger between 0 and 1” proof by contradiction. No good rational approximations to π were
produced in that proof. It is simply harder to get our grips on π than it is on powers of e.
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