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Abstract

There are many analogies between the integers and polynomials. In this paper,
we will prove several results in the integers and provide their analogous statements
for polynomials. The topics we will cover include the Division Algorithm and the
Euclidean Algorithm as well as how to construct fields using integers and polynomials.
We will also discuss some algebraic properties of both structures.

1 Introduction

To understand a mathematical result or idea, it is often helpful to view that idea in an
analogous setting. If we are able to understand a simpler analogous idea, we can apply
this perspective to the original idea to help us understand the more complex analog. As
an example of this methodology, to help work with results related to the integers, it can be
helpful to work with analogous results related to polynomials.
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During his UConn Math Club talk, Robert McDonald proved theorems for polynomials
that are analogous to Fermat’s Last Theorem and the abc Conjecture ([McD]), which are a
very famous theorem and conjecture, respectively, for integers. The proofs of the polynomial
analogs are relatively simple and can be completed in about a paragraph. Fermat’s Last
Theorem, which was originally conjectured by Pierre de Fermat in 1637, is stated as follows
([Wikb]).

Theorem 1.1 (Fermat’s Last Theorem, as stated in [Wikb]). There do not exist positive
integer solutions a, b, and c of the equation an + bn = cn for any integer n > 2.

Surprisingly, it took over 350 years to find a correct proof of Fermat’s Last Theorem
([Sin]). After over a year to correct a discovered error, Andrew Wiles presented the first
correct proof of Fermat’s Last Theorem in 1995 ([Wil95]).

The abc Conjecture, which was originally conjectured by David Masser in 1985 and
William Osterlé in 1988 and whose potential proof is yet to be resoundingly confirmed, is
stated as follows ([Wika]).

Conjecture 1.2 (The abc Conjecture, as stated in [Wika]). For every ε > 0, there exists
only finitely many triples (a, b, c) of relatively prime positive integers a, b, and c such that
a+ b = c and

c > rad(abc)1+ε,

where rad(abc) is the product of distinct prime factors of abc.

It can also be helpful to adapt solution methods from one area to the other. For example,
to find the greatest common divisor of two polynomials, we can adapt the method of finding
the greatest common divisor of two integers to the polynomial case, which we will see in this
paper. For these reasons, when dealing with problems in one area, it is often useful to keep
the other in mind.

Our goal in this paper is to illustrate some of the similarities between the integers and
polynomials with coefficients in a field by presenting results in the integers that have anal-
ogous statements for polynomials. In particular, we will discuss how to extend the Division
Algorithm and the Euclidean Algorithm for integers to similar results for polynomials. We
also discuss how to extend to polynomials the notion of extending the family of integers
to a field, first through considering the family of integers modulo a prime and, second, the
through constructing a field of fractions, which yields the family of irrational numbers in
the case of integers. By highlighting connections between results for integers and results for
polynomials, we hope to highlight the power of adapting results in one setting to another.

The remainder of this paper is organized as follows. In Section 2, we will cover results
in the set of integers Z that have analogous statements in the set of polynomials F[T ] in
the variable T over a field F. In Section 2.1, we will prove the Division Algorithm as
well as provide the statement of the Euclidean Algorithm. Then, in Section 2.2, we will give
examples of how to construct finite fields using integers as well as how to construct a familiar
field of infinite order, namely Q, using integers. Finally, in Section 2.3, we will discuss some
of the algebraic properties of Z. In Section 3, we will discuss statements in F[T ] that are
analogous to ones provided in Section 2.
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2 The Integers

We begin by presenting various well known results about and constructions using integers.
The main results of this section, which include both using the Division Algorithm and the
Euclidean Algorithm to find the greatest common divisor of two integers and using the
construction of the field of integers modulo a prime and the field of the rational numbers
from the family of integers, will have analogous results for polynomials later in this paper.

2.1 The Division Algorithm and the Euclidean Algorithm

In this section, our goal is to present the Euclidean algorithm for finding the greatest common
divisor of two integers. We will not prove that the Euclidean algorithm works, but we will
provide proofs of the Division algorithm and another proposition which when combined,
make it clear that the Euclidean algorithm is true.

We will assume that the reader is familiar with the concept of the greatest common
divisor of two integers.

Theorem 2.1 (Division Algorithm from [GV05]). If a, b ∈ Z with b > 0, then there exist
unique integers q and r such that

a = bq + r where 0 ≤ r < b.

Proof. ([GV05]) Let a, b ∈ Z such that b > 0. Consider the set S = {. . . , a− 2b, a− b, a, a+
b, . . .}. Note that S must contain non-negative integers. If a ≥ 0, this is clear because a ∈ S.
If a < 0, then a− ab = (−a)(b− 1) ≥ 0 because −a > 0 and b > 0 implies b− 1 ≥ 0. Hence,
a− ab ∈ S is non-negative and we have that S contains non-negative integers. Let S ′ be the
subset of S containing only non-negative integers. By the Well-Ordering Principle, there is
a smallest element of S ′. Call this smallest element r and let q ∈ Z be the integer such that
a− qb = r. We must now show r < b. Suppose r ≥ b. Then since a− qb = r, we would have
r − b = a− qb− b = a− (q + 1)b. Hence, r − b is a non-negative integer of the form a− nb
where n ∈ Z, so r− b ∈ S ′. However, since b > 0, r− b < r, which contradicts the fact that r
is the smallest non-negative integer in S ′. Therefore, there exist q, r ∈ Z such that a = bq+r
with 0 ≤ r < b. To prove q and r are unique, suppose we have a = q1b+ r1 = q2b+ r2 with
0 ≤ r1, r2 < b. Suppose for the sake of contradiction that r1 6= r2. Then without loss of
generality, suppose r2 > r1. It follows that 0 < r2− r1 < b. Since we have q1b+ r1 = q2b+ r2,
we get r2 − r1 = (q1 − q2)b. Thus, b|(r2 − r1) and we have b ≤ r2 − r1. This contradicts the
fact that r2 − r1 < b. Therefore, r2 = r1. It follows that (q1 − q2)b = 0. Since b > 0 by
assumption, we have q1− q2 = 0 and so q1 = q2. Hence, the integers q and r are unique.

Our next proposition is very helpful in understanding why the Euclidean Algorithm
works.

Proposition 2.2. (Proposition 2.21 from [GV05]) If a = qb + r where a, b, q, r ∈ Z, then
gcd(a, b) = gcd(b, r).
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Proof. ([GV05]) Suppose d = gcd(a, b). Then since a = qb+r, we have r = a−qb. Therefore,
d|r because d|a and d|b. It follows that d is a common divisor of b and r. Now suppose c =
gcd(b, r). Then d ≤ c as d is a common divisor of b and r. Also, we have c|a from the
equation a = qb + r. Thus, c is a common divisor of both a and b. It follows that c ≤ d as
d = gcd(a, b). Since d ≤ c ≤ d, we have gcd(a, b) = d = c = gcd(b, r).

Repeatedly using Theorem 2.1 and Proposition 2.2, we come to the Euclidean algorithm.

Theorem 2.3 (Euclidean Algorithm from [GV05]). Let a, b ∈ Z such that b 6= 0. If b|a,
then gcd(a, b) = |b|. If b does not divide a, then gcd(a, b) = rn, the last non-zero remainder
in the following list of equations obtained from Theorem 2.1.

a = q1b+ r1 where 0 < r1 < |b|
b = q2r1 + r2 where 0 < r2 < r1

r1 = q3r2 + r3 where 0 < r3 < r2
...

rn−2 = qnrn−1 + rn where 0 < rn < rn−1

rn−1 = qn+1rn + 0

Instead of providing a proof of the Euclidean algorithm, we will give an example of
how one would go about computing the greatest common divisor of two integers using the
algorithm.

Example 2.4. Using Theorem 2.3, we will find the greatest common divisor of 484 and 451.

484 = 451 · 1 + 33

451 = 33 · 13 + 22

33 = 22 · 1 + 11

22 = 11 · 2 + 0

Therefore, gcd(484, 451) = 11 by Theorem 2.3.

2.2 Constructing Fields Using Integers

We would now like to show that we can construct fields of different orders from the integers
using modular arithmetic and equivalence classes. In order to show this, we will need the
definition of a field. However, our definition of a field relies on knowing what a group is, so
our first task is familiarizing ourself with the notion of a group.

Definition 2.5. (Definition 3.1.4 from [BB06]) Let G be a nonempty set with a single binary
operation ∗. We say (G, ∗) is a group if the followng hold:

• For all a, b ∈ G, a ∗ b ∈ G.
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• For all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• There exists e ∈ G such that a ∗ e = e ∗ a = a for every a ∈ G.

• For every a ∈ G, there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

If a ∗ b = b ∗ a for all a, b ∈ G, we say that (G, ∗) is an abelian group.

We are now able to define the notion of a field in terms of groups.

Definition 2.6. (Definition 3.3.5 from [BB06]) Let F be a set with two binary operations
+, ·, with respective identity elements 0 and 1. If 0 6= 1, then F is called a field if the
following hold:

• The set F is an abelian group under +.

• The non-zero elements of F form an abelian group under ·.

• For all a, b, c ∈ F, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

Our next two sections deal with the actual constructions of both finite fields and the
rational numbers.

2.2.1 Finite Fields

Using modular arithmetic, the equivalence classes of the integers modulo a prime number
create a field of finite order. This is stated more formally in the following theorem.

Theorem 2.7. Define + and · to be ordinary addition and multiplication of equivalence
classes. Then Zm with binary operations + and · is a field if and only if m is prime.

Proof. (⇐=) It is easy to check that Zm is an abelian group under + for any m ∈ N. Also,
to check the non-zero elements of Zm form an abelian group under ·, we will only show that
for every a ∈ Zm, there exists a−1 ∈ Zm such that a · a−1 = 1. We know that · is associative,
Zm is closed under ·, and that the multiplicative identity, 1, is in Zm. Suppose a ∈ Zm.
Then am−1 = 1 by Fermat’s Little Theorem. Thus, am−2 is the multiplicative inverse of a
in Zm. We know am−2 ∈ Zm since this set is closed under ·. Finally, we know that addition
and subtraction obey the distributive laws.
(=⇒) To show the forward direction, we will prove the contrapositive. Suppose m ∈ Z+ is
composite. Then m = nk for n, k ∈ Z+. Therefore, n < m and k < m where n, k 6= 0.
Hence, n and k are non-zero elements in Zm. However, nk = m = 0 in Zm. Thus, the non-
zero elements in Zm are not closed under · if m is composite. Hence, the non-zero elements
of Zm do not form an abelian group under · and Zm is not a field.

Next, we will show how we can formally construct the rational numbers using equivalence
classes.
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2.2.2 Constructing the Rational Numbers

We want to define the rational numbers in terms of equivalence classes of a specific equiva-
lence relation. To achieve this goal, we will first define a relation and then show it is in fact
an equivalence relation.

Definition 2.8. ([GV05]) Define the relation ∼ on the set Z× Z− {0} by (a, b) ∼ (c, d) if
and only if ad = bc.

We will want to show that the relation ∼ is an equivalence relation. We must show that
∼ is reflexive, transitive, and symmetric.

Theorem 2.9. The relation ∼ from Definition 2.8 is an equivalence relation.

Proof. Let (a, b) ∈ Z × Z − {0}. Since integer multiplication is commutative, we know
that ab = ba and we have (a, b) ∼ (a, b). Now let (a, b), (c, d) ∈ Z × Z − {0} and suppose
(a, b) ∼ (c, d). Then we have ad = bc. Thus, da = cb and we can conclude that (c, d) ∼ (a, b).
Finally, suppose (a, b), (c, d), (e, f) ∈ Z×Z−{0} such that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
We want to show that (a, b) ∼ (e, f). Since (a, b) ∼ (c, d) and (c, d) ∼ (e, f), we know
that ad = bc and cf = de. Therefore, we have adf = bcf as well as bcf = bde. Thus,
adf = bde. Since d 6= 0, we have af = be and by definition, (a, b) ∼ (e, f). Since ∼ is
reflexive, symmetric, and transitive, ∼ is an equivalence relation.

Now that we know ∼ is an equivalence relation, we can define two operations, + and
·, on the set of equivalence classes of ∼. For (a, b), (c, d) ∈ Z × Z − {0}, define + by
(a, b) + (c, d) = (ad+ bc, bd). Define · by (a, b) · (c, d) = (ac, bd). We now have a set on which
two binary operations are defined. We will not check that + and · are well-defined, but this
is not difficult. We now have what is required to define Q as a field.

Definition 2.10. Define the rational numbers, denoted Q, to be the set of equivalence
classes of ∼ from Definition 2.8 with the binary operations + and · defined above.

We will not prove that Q is a field. However, we will later see that there is an analogous
construction in F[T ] to the one outlined above.

2.3 Algebraic Properties of the Integers

Finally, we will discuss some of the algebraic properties of Z. The integers are what is known
as a ring. A ring is a field without the requirement that every non-zero element must have
a multiplicative inverse. A more formal definition is given below.

Definition 2.11. (Definition 5.1.2 from [BB06]) Let R be a set on which two binary oper-
ations, +, · , are defined. Then R is called a commutative ring if the following properties
hold:

• The set R is an abelian group under +.
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• The operation · is associative and commutative.

• The set R has an identity element under ·.

• For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

From this definition, it is clear that Z is a ring. We know that it cannot be a field because
if it were, then an element such as 2 ∈ Z would have a multiplicative inverse. So there would
exist a ∈ Z such that 2 · a = 1, which we know is not possible. Thus, the non-zero elements
of Z do not form an abelian group under · and Z cannot be a field. However, there is one
more important algebraic property that Z has in common with fields.

Definition 2.12. (Definition 5.1.7 from [BB06]) A commutative ring R is said to be an
integral domain if 1 6= 0 and for all a, b ∈ R, ab = 0 implies a = 0 or b = 0.

From experience, we know that if ab = 0 where a, b ∈ Z, then a = 0 or b = 0. Thus, Z
is an integral domain. However, not every ring is an integral domain. Consider the ring Z4.
In Z4, 2 6= 0 but 2 · 2 = 4 = 0 in Z4. So Z4 is a ring that is not an integral domain.

We would like to prove one additional algebraic property that the integers have related
to ideals. First, we will define the notion of an ideal.

Definition 2.13. (Definition 5.3.1 from [BB06]) Let R be a commutative ring. A nonempty
subset I ⊂ R is called an ideal of R if the following hold:

• For all a, b ∈ I, a± b ∈ I.

• If a ∈ I and r ∈ R, then ar ∈ I.

For a ∈ R, define (a) := {ab|b ∈ R}. An ideal I is called principal if I = (a) for some
a ∈ R.

We now have all we need to prove our final algebraic property related to the integers.

Theorem 2.14 (Theorem 2.1 from [Conb]). In Z, all ideals are principal.

Proof. ([Conb]) Let I be an ideal in Z. If I = {0} then I = (0) is principal. Suppose
I 6= {0}. Let a ∈ I with a 6= 0 such that for all b ∈ I with b 6= 0, |a| ≤ |b|. Then clearly,
(a) ⊂ I. We must show that I ⊂ (a). Let b ∈ I. By Theorem 2.1, there exist q, r ∈ Z such
that b = aq + r and 0 ≤ r < |a|. Thus, r = b − aq. Since a ∈ I, we know that aq ∈ I.
Therefore, since b ∈ I, we have b− aq ∈ I. So r ∈ I. We also have |r| < |a|. If r 6= 0, then
this contradicts the assumption that |a| ≤ |x| for any x ∈ I with x 6= 0. Thus, r = 0 and
b = aq. Therefore, we have b ∈ (a) and I ⊂ (a). It follows that I = (a)
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3 Polynomials

In this section, we will cover many results for polynomials that are analogous to the ones
presented in Section 2. Many proofs of the results in this section are omitted as they often end
up being very similar to the proof from the integer case, perhaps with a subtle difference. In
order to begin talking about polynomials, however, we will need to introduce some notation.

Remark 3.1. Let F be a field. The set of all polynomials with coefficients in F is denoted
F[T ].

We are now ready to begin presenting results related to polynomials. We will begin with
the Division Algorithm and the Euclidean Algorithm just as we did in the integer case.

3.1 The Division Algorithm and The Euclidean Algorithm

Just as in Z, we have a division algorithm in F[T ]. This will be used to create an analog to
the Euclidean algorithm in Z.

Theorem 3.2 (Theorem 4.2.1 from [BB06]). For two polynomials f(x), g(x) ∈ F[T ] such
that g(T ) 6= 0, there exist unique q(T ), r(T ) ∈ F[T ] such that f(T ) = g(T )q(T ) + r(T ) where
deg(r(T )) < deg(g(T )) or r(T ) = 0.

Theorem 3.2 is almost identical to Theorem 2.1. In the integer case, we required that
the remainder r be strictly less than the quotient b. In this case, we do the same thing by
requiring the degree (the analog of the absolute value of an integer) of r(T ) is less than the
degree of g(T ) or that r(T ) = 0. By repeated uses of Theorem 3.2, we can find the greatest
common divisor of two polynomials in the exact same way we found the greatest common
divisor of two integers.

Example 3.3. Find the greatest common divisor of f(x) = x4 + x3 + x + 1 and g(x) =
x3 + x2 + x+ 1 over Z2. We will proceed by the Euclidean Algorithm, replacing our integers
a and b by the polynomials f(x) and g(x).

x4 + x3 + x+ 1 = (x3 + x2 + x+ 1)(x) + (x2 + 1)

x3 + x2 + x+ 1 = (x2 + 1)(x+ 1) + 0

As in the Euclidean Algorithm for integers, our greatest common divisor is the last non-
zero remainder. Thus, gcd(f(x), g(x)) = x2 + 1.

3.2 Constructing Fields Using Polynomials

Just as in Z, we can create finite fields and infinite fields using very similar methods in F[T ].
We will use the polynomial analog to prime numbers, irreducible polynomials, to create finite
fields. Using the same equivalence relation from Definition 2.8, we will also be able to create
fields of infinite order.
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3.2.1 Finite Fields

We would like to be able to create fields of finite order using polynomials. Ideally, we will
do this in a similar way to the construction in Section 2.2. In order to do this, we will need
to introduce what it means to view one polynomial modulo another. First, we will define
irreducible polynomials, our polynomial analog to prime numbers.

Definition 3.4. (Definition 4.2.6 from [BB06]) A polynomial f(T ) ∈ F[T ] is said to be
reducible over F if there exist g(T ), h(T ) ∈ F[T ] such that f(T ) = g(T )h(T ) where
deg(g(T )) < deg(f(T )) and deg(h(T )) < deg(f(T )). If a polynomial is not reducible over F
then it is said to be irreducible.

Next, we would like to introduce what it means to look at a polynomial modulo another
polynomial. This is done using division with remainder, just as it is done for the integers.

Definition 3.5. Let f(T ), g(T ) ∈ F[T ] with g(T ) 6= 0. By Theorem 3.2, we may write
f(T ) = g(T )q(T )+r(T ) where deg(r(T )) < deg(g(T )) or r(T ) = 0. We define f(T ) modulo
g(T ) to be r(T ).

Just as we may view the integers modulo a single integer, we would also like to be able
to view the entire set of polynomials modulo a single polynomial.

Remark 3.6. Given a polynomial f(T ) ∈ F[T ] with f(T ) 6= 0, we will denote the set
{a(x) modulo f(x)|a(x) ∈ F[T ]}, the set of all polynomials in F[T ] modulo f(T ), by F[T ]/(f(T )).

Armed with this new notation, we are finally ready to construct fields of finite order. For
this construction, we will take F = Zp where p is a prime integer. We will make a field of
order pn by “modding out” Zp[T ] by an irreducible polynomial in Z[T ]. This is analogous
to the result that the integers modulo a prime p is a field of order p.

Theorem 3.7 (Theorem 1.1 from [Cona]). For a prime p and irreducible polynomial π(T ) ∈
Zp[T ] of degree n, the ring Zp[T ]/(π(T )) is a field of order pn.

Proof. ([Cona]) By Definition 3.5, any polynomial f(x) ∈ Zp[T ]/(π(T )) must have degree less
than the degree of π(T ) since f(T ) modulo π(T ) is the remainder acquired from Theorem 3.2.
Thus, Zp[T ]/(π(T )) = {c0 + c1T + · · · + cn−1T

n−1|ci ∈ Zp}. There are p choices for each
coefficient since the coefficients are in Zp. Also, we must make this choice n times as there are
n coefficients in the remainder. Hence, the set Zp[T ]/(π(T )) has order pn. Using a method
similar to the proof that Zp is a field, we can conclude that Zp[T ]/(π(T )) is a field.

These fields are analogous to Zp for a prime number p. One difference is that we can
construct fields of any prime power by finding an irreducible polynomial of a certain degree.

Example 3.8. Z2[T ]/(T 4 + T + 1) is a field of order 24 = 16.
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3.2.2 Fraction Fields

We can use almost the exact same equivalence relation from Definition 2.8 to define “fraction
fields.”

Definition 3.9. Define the relation ∼ on the set F[T ]×(F[T ]−{0}) such that (f(T ), g(T )) ∼
(h(T ), k(T )) if and only if f(T )k(T ) = g(T )h(T ).

By a method similar to the proof of Theorem 2.9, ∼ from Definition 3.9 is an equivalence
relation. Now, we must define our two operations and we will have a field analogous to
the rational numbers. For (f(T ), g(T )), (h(T ), k(T )) ∈ F[T ] × (F[T ] − {0}) define + by
(f(T ), g(T )) + (h(T ), k(T )) = (f(T )k(T ) + h(T )g(T ), g(T )k(T )). Define · by (f(T ), g(T )) ·
(h(T ), k(T )) = (f(T )h(T ), g(T )k(T )).

Theorem 3.10. The equivalence classes of ∼ from Definition 3.9 are a field under + and ·
defined above.

As in the integer case, we will not check that all of the conditions are met for this to be a
field. However, there is one major difference between this construction and the construction
of the rational numbers. This difference has to do with the characteristic of the resulting
field.

Definition 3.11. (Definition 5.2.10 from [BB06]) Let R be a commutative ring. The char-
acteristic of R is the smallest positive integer a such that a ·1 = 0 in R. If no such a exists,
R has characteristic 0.

The rational numbers have characteristic 0. Also, the only fields of non-zero characteristic
that we have seen so far have been finite. But, we can create fields of infinite order with
non-zero characteristic by using the above construction.

Example 3.12. Set F = Z5. Then the equivalence classes of the relation ∼ from Defini-
tion 3.9 are a field of infinite order with characteristic 5.

3.3 Algebraic Properties of Polynomials

Lastly, we will discuss some algebraic properties of F[T ] and compare these to the algebraic
properties discussed in Section 2.3. Just like the integers, F[T ] is a ring and integral domain.
Also, ideals in F[T ] are all principal, just as in Z. We will provide the proof of this fact to
illustrate how similar the proofs of these analogous results can be.

Theorem 3.13 (Theorem 2.1 from [Conb]). All ideals in F[T ] are principal.

Proof. ([Conb]) Let I be an ideal in F[T ]. If I = {0}, then the ideal (0) is principal. Suppose
I 6= {0}. Then there exists f(T ) ∈ I such that deg(f(T )) ≤ deg(g(T )) for every g(T ) ∈ F[T ]
such that g(T ) 6= 0. It is clear that (f(T )) ⊂ I. We must show that I ⊂ (f(T )). Let
g(T ) ∈ I be any polynomial in I. Using Theorem 3.2, we may write g(T ) = f(T )q(T )+r(T )
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where deg(r(T )) < deg(f(T )) or r(T ) = 0. Thus, we have g(T ) − f(T )q(T ) = r(T ). Since
f(T ), g(T ) ∈ I, we have that r(T ) ∈ I. If r(T ) 6= 0, we have that there is a non-zero element
in I such that deg(r(T )) < deg(f(T )). This contradicts our assumption that for every
g(T ) ∈ I, deg(f(T )) ≤ deg(g(T )). Hence, we must have r(T ) = 0 and g(T ) = f(T )q(T ).
Thus, g(T ) ∈ (f(T )) and I ⊂ (f(T )). Therefore, I = (f(T )) and I is principal.

The above proof could have been written by taking the proof of Theorem 2.14 and
replacing Z with F[T ] and replacing instances of specific integers with polynomials. The
only major difference is that this proof references the degree of polynomials while the proof
of Theorem 2.14 uses the absolute value of integers. But these are analogous properties.
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