Hilbert's 8th Problem

Brandon Alberts

University of Connecticut Math Club

October 16, 2019

Definition

An integer > 1 is called a **prime number** if its only divisors are 1 and itself.

Definition

An integer > 1 is called a **prime number** if its only divisors are 1 and itself.

Definition

An integer >1 is called a $\ensuremath{\textit{prime number}}$ if its only divisors are 1 and itself.

• primes: 2, 3, 5, 7, 11, 13, 17,...

Definition

An integer >1 is called a $\ensuremath{\mbox{prime number}}$ if its only divisors are 1 and itself.

- primes: 2, 3, 5, 7, 11, 13, 17,...
- composites: 4, 6, 8, 9,...

Definition

An integer > 1 is called a **prime number** if its only divisors are 1 and itself.

- primes: 2, 3, 5, 7, 11, 13, 17,...
- composites: 4, 6, 8, 9,...

Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

Definition

An integer > 1 is called a **prime number** if its only divisors are 1 and itself.

- primes: 2, 3, 5, 7, 11, 13, 17,...
- composites: 4, 6, 8, 9,...

Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

•
$$4 = 2 \cdot 2, \ 6 = 2 \cdot 3, \dots$$

Definition

An integer > 1 is called a **prime number** if its only divisors are 1 and itself.

- primes: 2, 3, 5, 7, 11, 13, 17,...
- composites: 4, 6, 8, 9,...

Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

• $4 = 2 \cdot 2, 6 = 2 \cdot 3, \dots 236 = 2 \cdot 2 \cdot 59, \dots$

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time.

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

•
$$12 = 2 \cdot 2 \cdot 3$$

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

• $12 = 2 \cdot 2 \cdot 3 = 2 \cdot 2 \cdot 3 \cdot 1$

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

• $12 = 2 \cdot 2 \cdot 3 = 2 \cdot 2 \cdot 3 \cdot 1 = 2 \cdot 2 \cdot 3 \cdot 1 \cdot 1 = \cdots$

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

• $12 = 2 \cdot 2 \cdot 3 = 2 \cdot 2 \cdot 3 \cdot 1 = 2 \cdot 2 \cdot 3 \cdot 1 \cdot 1 = \cdots$

1 has some very different properties compared to other positive integers, and is sometimes called a **unit**.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Suppose $p_1, p_2, ..., p_n$ are the first *n* prime numbers.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Suppose $p_1, p_2, ..., p_n$ are the first *n* prime numbers.

Let $N = p_1 p_2 \cdots p_n + 1$. N > 1, so it can be written as a nonempty product of prime numbers.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Suppose $p_1, p_2, ..., p_n$ are the first *n* prime numbers.

Let $N = p_1 p_2 \cdots p_n + 1$. N > 1, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number ℓ dividing N.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Suppose $p_1, p_2, ..., p_n$ are the first *n* prime numbers.

Let $N = p_1 p_2 \cdots p_n + 1$. N > 1, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number ℓ dividing N.

None of $p_1, p_2, ..., p_n$ divide N.

Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

Suppose $p_1, p_2, ..., p_n$ are the first *n* prime numbers.

Let $N = p_1 p_2 \cdots p_n + 1$. N > 1, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number ℓ dividing N.

None of $p_1, p_2, ..., p_n$ divide *N*. Thus $\ell \neq p_1, p_2, ..., p_n$, so ℓ must be a new prime number not on our original list.

Sieve of Eratosthenes

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Brandon Alberts

Hilbert's 8^{th} Problem

Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes

	2	3	5	7	9	
11		13	15	17	19	
21		23	25	27	29	
31		33	35	37	39	
41		43	45	47	49	
51		53	55	57	59	
61		63	65	67	69	
71		73	75	77	79	
81		83	85	87	89	
91		93	95	97	99	

Brandon Alberts

Sieve of Eratosthenes

	2	3	5	7	9	
11		13	15	17	19	
21		23	25	27	29	
31		33	35	37	39	
41		43	45	47	49	
51		53	55	57	59	
61		63	65	67	69	
71		73	75	77	79	
81		83	85	87	89	
91		93	95	97	99	

Brandon Alberts

Hilbert's 8^{th} Problem

Sieve of Eratosthenes

	2	3	5	7		
11		13		17	19	
		23	25		29	
31			35	37		
41		43		47	49	
		53	55		59	
61			65	67		
71		73		77	79	
		83	85		89	
91			95	97		

Sieve of Eratosthenes

	2	3	5	7		
11		13		17	19	
		23	25		29	
31			35	37		
41		43		47	49	
		53	55		59	
61			65	67		
71		73		77	79	
		83	85		89	
91			95	97		

Brandon Alberts

Sieve of Eratosthenes

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47	49	
		53			59	
61				67		
71		73		77	79	
		83			89	
91				97		

Brandon Alberts

Sieve of Eratosthenes

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47	49	
		53			59	
61				67		
71		73		77	79	
		83			89	
91				97		

Brandon Alberts

Sieve of Eratosthenes

	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47		
		53			59	
61				67		
71		73			79	
		83			89	
				97		

Sieve of Eratosthenes

Sieve of Eratosthenes

Primes in Arithmetic Progressions

Theorem (Dirichlet, 1837)

Given integers a and d with share no common divisors larger than 1, the arithmetic progression

$$a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, \dots$$

has infinitely many prime numbers.

Primes in Arithmetic Progressions

Theorem (Dirichlet, 1837)

Given integers a and d with share no common divisors larger than 1, the arithmetic progression

$$a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, \dots$$

has infinitely many prime numbers.

• The numbers 3 and 10 share no common divisors larger than 1: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103,...

Primes in Arithmetic Progressions

Theorem (Dirichlet, 1837)

Given integers a and d with share no common divisors larger than 1, the arithmetic progression

$$a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, \dots$$

has infinitely many prime numbers.

- The numbers 3 and 10 share no common divisors larger than 1: 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103,...
- The numbers 1 and 4 share no common divisors larger than 1: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41,...

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

• (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (71,73),...

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

• (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (71,73),...

We can ask a similar question about other **constellations**, such as triples (p, p + 2, p + 6) such that p, p + 2, and p + 6 are all prime.

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

• (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (71,73),...

We can ask a similar question about other **constellations**, such as triples (p, p + 2, p + 6) such that p, p + 2, and p + 6 are all prime.

Trivial cases: $(p + a_0, p + a_1, ..., p + a_k)$ such that there exists an integer n for which the remainders of $a_0, a_1, ..., a_k$ divided by n cover all the integers 0, 1, 2, ..., n - 1 (i.e., $\{a_0, a_1, ..., a_k \mod n\} = \mathbb{Z}/n\mathbb{Z}$).

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

• (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (71,73),...

We can ask a similar question about other **constellations**, such as triples (p, p + 2, p + 6) such that p, p + 2, and p + 6 are all prime.

Trivial cases: $(p + a_0, p + a_1, ..., p + a_k)$ such that there exists an integer n for which the remainders of $a_0, a_1, ..., a_k$ divided by n cover all the integers 0, 1, 2, ..., n - 1 (i.e., $\{a_0, a_1, ..., a_k \mod n\} = \mathbb{Z}/n\mathbb{Z}$).

• (p, p+2, p+4), at least one of p, p+2, or p+4 is divisible by 3, and so is not prime if p > 3.

Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers (p, p + 2) for which p and p + 2 are both prime.

• (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (71,73),...

We can ask a similar question about other **constellations**, such as triples (p, p + 2, p + 6) such that p, p + 2, and p + 6 are all prime.

Trivial cases: $(p + a_0, p + a_1, ..., p + a_k)$ such that there exists an integer n for which the remainders of $a_0, a_1, ..., a_k$ divided by n cover all the integers 0, 1, 2, ..., n - 1 (i.e., $\{a_0, a_1, ..., a_k \mod n\} = \mathbb{Z}/n\mathbb{Z}$).

• (p, p+2, p+4), at least one of p, p+2, or p+4 is divisible by 3, and so is not prime if p > 3.

Nontrivial cases: there is not single case which is proven!

Theorem (Euler, 1737)

$$\sum_{p \text{ prime}} \frac{1}{p} = \infty$$

Proving this result is an alternative way to show that there are infinitely many primes.

Theorem (Euler, 1737)

$$\sum_{prime} \frac{1}{p} = \infty$$

Proving this result is an alternative way to show that there are infinitely many primes.

p

Can we show that

$$\sum_{\substack{(p,p+2)\\p,p+2 \text{ prime}}} \frac{1}{p} + \frac{1}{p+2} = \infty$$

as a way to prove the twin prime conjecture?

D

Infinite series

Theorem (Euler, 1737)

$$\sum_{p \text{ prime}} \frac{1}{p} = \infty$$

Proving this result is an alternative way to show that there are infinitely many primes.

Theorem (Brun, 1919)

$$\sum_{\substack{(p,p+2)\\p,p+2 \text{ prime}}} \frac{1}{p} + \frac{1}{p+2} < \infty$$

How far do we have to go from one prime p_n to the next prime p_{n+1} ?

How far do we have to go from one prime p_n to the next prime p_{n+1} ? At worst:

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At worst:**

• The gap between p_n and p_{n+1} can be arbitrarily large.

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At worst:**

- The gap between p_n and p_{n+1} can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between N and 2N. This implies p_n < p_{n+1} < 2p_n.

How far do we have to go from one prime p_n to the next prime p_{n+1} ? At worst:

- The gap between p_n and p_{n+1} can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between N and 2N. This implies p_n < p_{n+1} < 2p_n.

This bound can be improved so that $p_{n+1} < p_n^{\theta}$ for some $\theta < 1$. The best known bound is given by $\theta = 0.525$ (Baker, Harmon, Pintz 2001).

How far do we have to go from one prime p_n to the next prime p_{n+1} ? At worst:

- The gap between p_n and p_{n+1} can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between N and 2N. This implies p_n < p_{n+1} < 2p_n.

This bound can be improved so that $p_{n+1} < p_n^{\theta}$ for some $\theta < 1$. The best known bound is given by $\theta = 0.525$ (Baker, Harmon, Pintz 2001).

• The gap between p_n and p_{n+1} can be arbitrarily larger than $\log(p_n)$ (Westzynthius, 1931).

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At worst:**

- The gap between p_n and p_{n+1} can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between N and 2N. This implies p_n < p_{n+1} < 2p_n.

This bound can be improved so that $p_{n+1} < p_n^{\theta}$ for some $\theta < 1$. The best known bound is given by $\theta = 0.525$ (Baker, Harmon, Pintz 2001).

• The gap between p_n and p_{n+1} can be arbitrarily larger than $\log(p_n)$ (Westzynthius, 1931).

In particular, $\frac{p_{n+1}-p_n}{\log(p_n)}$ is an unbounded sequence.

How far do we have to go from one prime p_n to the next prime p_{n+1} ? At best:

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At best:**

• The Twin Prime Conjecture predicts that the gap $p_{n+1} - p_n$ is equal to 2 infinitely many times.

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At best:**

- The Twin Prime Conjecture predicts that the gap $p_{n+1} p_n$ is equal to 2 infinitely many times.
- (Zhang, 2013) The gap $p_{n+1} p_n$ is smaller than 70 million infinitely many times

How far do we have to go from one prime p_n to the next prime p_{n+1} ? **At best:**

- The Twin Prime Conjecture predicts that the gap $p_{n+1} p_n$ is equal to 2 infinitely many times.
- (Zhang, 2013) The gap $p_{n+1} p_n$ is smaller than 70 million infinitely many times
- A polymath project has improved this number to 246, refining Zhang's approach.

Answer: Not very

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%.

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%. Less than 17% of numbers less than 1000 are prime.

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%. Less than 17% of numbers less than 1000 are prime. In fact, we know that:

$$\lim_{x \to \infty} \frac{\text{number of primes below } x}{x} = 0.$$

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%. Less than 17% of numbers less than 1000 are prime. In fact, we know that:

$$\lim_{x \to \infty} \frac{\text{number of primes below } x}{x} = 0.$$

The **Prime Number Theorem** is a way to quantify how quickly this proportion tends to zero.

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%. Less than 17% of numbers less than 1000 are prime. In fact, we know that:

$$\lim_{x \to \infty} \frac{\text{number of primes below } x}{x} = 0.$$

The **Prime Number Theorem** is a way to quantify how quickly this proportion tends to zero.

 $\pi(x) =$ number of primes below x

Answer: Not very

We found 25 primes below 100 using the sieve of Eratosthenes, which is about 25%. Less than 17% of numbers less than 1000 are prime. In fact, we know that:

$$\lim_{x \to \infty} \frac{\text{number of primes below } x}{x} = 0.$$

The **Prime Number Theorem** is a way to quantify how quickly this proportion tends to zero.

 $\pi(x) =$ number of primes below x

(Go to wolframcloud.com)

Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1$$

Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1$$

Also written:

$$\pi(x) \sim \frac{x}{\ln(x)}$$

Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1$$

Also written:

$$\pi(x) \sim \frac{x}{\ln(x)}$$

This says that the percentage of primes below x is about $1/\ln(x)$.

Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1$$

Also written:

$$\pi(x) \sim \frac{x}{\ln(x)}$$

This says that the percentage of primes below x is about $1/\ln(x)$.

We can interpret this "heuristically" to say that the probability that *n* is prime is $1/\ln(n)$.

• The probability that *n* is prime is heuristically $1/\ln(n)$.

- The probability that *n* is prime is heuristically $1/\ln(n)$.
- The probability of both n and n + 2 being prime is heuristically

 $\frac{1}{\ln(n)\ln(n+2)}\,.$

- The probability that *n* is prime is heuristically $1/\ln(n)$.
- The probability of both n and n + 2 being prime is heuristically

$$\frac{1}{\ln(n)\ln(n+2)}$$

• The expected number of pairs (n, n + 2) for which both n and n + 2 are prime is

$$\sum_{n=2}^{\infty} \frac{1}{\ln(n)\ln(n+2)} \, .$$

- The probability that *n* is prime is heuristically $1/\ln(n)$.
- The probability of both n and n + 2 being prime is heuristically

$$\frac{1}{\ln(n)\ln(n+2)}$$

• The expected number of pairs (n, n + 2) for which both n and n + 2 are prime is

$$\sum_{n=2}^{\infty} \frac{1}{\ln(n)\ln(n+2)} \, .$$

• This is a divergent sum by comparison with 1/n.

A "better" Prime Number Theorem

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\mathrm{Li}(x) = \int_2^x \frac{1}{\ln(t)} \, dt \, .$$

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\ln(t)} \, dt \, .$$

$$\lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\ln(t)} \, dt \, .$$

$$\lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Also written:

 $\pi(x) \sim \operatorname{Li}(x) \, .$

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\ln(t)} \, dt \, .$$

Theorem (Prime Number Theorem)

$$\lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Also written:

 $\pi(x) \sim \operatorname{Li}(x) \, .$

What makes this better?

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\ln(t)} \, dt \, .$$

Theorem (Prime Number Theorem)

$$\lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Also written:

 $\pi(x) \sim \operatorname{Li}(x) \, .$

What makes this better?

$$|\pi(x) - \operatorname{Li}(x)|$$
 is "small"

14/20

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

A "better" Prime Number Theorem

Define the logarithmic integral function by

$$\mathrm{Li}(x) = \int_2^x \frac{1}{\ln(t)} dt \, .$$

Theorem (Prime Number Theorem)

$$\lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Also written:

 $\pi(x) \sim \operatorname{Li}(x) \, .$

What makes this better?

$$|\pi(x) - \operatorname{Li}(x)|$$
 is "small"

(Go back to wolframcloud.com)

Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.

Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.

For $s=\sigma+it$ a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \, .$$

Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.

For $s=\sigma+it$ a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

• What is $\zeta(s)$ at other complex numbers?

Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.

For $s=\sigma+it$ a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \, .$$

- What is $\zeta(s)$ at other complex numbers?
- What does this have to do with the prime numbers?

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

• Apply Taylor series to the logarithm and rearrange to get

$$\sum_{p \text{ prime}} \frac{1}{p^s} = \log \zeta(s) - \sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

• Apply Taylor series to the logarithm and rearrange to get

$$\sum_{p \text{ prime}} \frac{1}{p^s} = \log \zeta(s) - \sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$

• The series
$$\sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$
 is convergent for $\operatorname{Re}(s) > 1/2$

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

• Apply Taylor series to the logarithm and rearrange to get

$$\sum_{p \text{ prime}} \frac{1}{p^s} = \log \zeta(s) - \sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$

• The series
$$\sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$
 is convergent for $\operatorname{Re}(s) > 1/2$.

• The function $\log \zeta(s)$ has singularities at

• s = 1, because $\zeta(s)$ has a singularity at s = 1,

•
$$\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

• Apply Taylor series to the logarithm and rearrange to get

$$\sum_{p \text{ prime}} \frac{1}{p^s} = \log \zeta(s) - \sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{kp^{ks}}$$

• The series
$$\sum_{k=2}^{\infty} \sum_{p \text{ prime}} \frac{1}{k p^{ks}}$$
 is convergent for $\operatorname{Re}(s) > 1/2$.

• The function $\log \zeta(s)$ has singularities at

- s = 1, because $\zeta(s)$ has a singularity at s = 1,
- $s = \rho$ a zero of $\zeta(s)$, because $\log(z)$ has a singularity at z = 0.

arithmetic

complex analysis

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} \frac{1}{p^s}$

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} rac{1}{p^s}$
bounds on the growth of $\pi(x)$	p prime

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} rac{1}{p^s}$
bounds on the growth of $\pi(x)$	places where $P(s)$ converges

	arithmetic	complex analysis
	prime numbers	$P(s) = \sum_{p \text{ prime}} rac{1}{p^s}$
bo	unds on the growth of $\pi(x)$	places where $P(s)$ converges
L	$i(x)$ (closest to power x^1)	

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} rac{1}{p^s}$
bounds on the growth of $\pi(x)$	prime places where $P(s)$ converges
$\operatorname{Li}(x)$ (closest to power x^1)	the first singularity of $P(s)$ at $s = 1$

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} \frac{1}{p^s}$
bounds on the growth of $\pi(\mathbf{x})$	prime $P(s)$ converges
$\operatorname{Li}(x)$ (closest to power x^1)	the first singularity of $P(s)$ at $s = 1$
closest to power x^{ρ}	the other singularities for $s = \rho$ a zero of the $\zeta(s)$

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} \frac{1}{p^s}$
bounds on the growth of $\pi(x)$	places where $P(s)$ converges
$\operatorname{Li}(x)$ (closest to power x^1)	the first singularity of $P(s)$ at $s=1$
closest to power x^{ρ}	the other singularities for $s = \rho$ a zero of the $\zeta(s)$

Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon > 0$ there exists a constant C such that

$$|\pi(x) - \operatorname{Li}(x)| \leq C \cdot x^{a+\epsilon}$$

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} \frac{1}{p^s}$
bounds on the growth of $\pi(x)$	places where $P(s)$ converges
$\operatorname{Li}(x)$ (closest to power x^1)	the first singularity of $P(s)$ at $s=1$
closest to power x^{ρ}	the other singularities for $s = \rho$ a zero of the $\zeta(s)$

Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon > 0$ there exists a constant C such that

$$|\pi(x) - \operatorname{Li}(x)| \leq C \cdot x^{a+\epsilon}$$

The Riemann Hypothesis says that a = 1/2.

arithmetic	complex analysis
prime numbers	$P(s) = \sum_{p \text{ prime}} rac{1}{p^s}$
bounds on the growth of $\pi(x)$	places where $P(s)$ converges
$\operatorname{Li}(x)$ (closest to power x^1)	the first singularity of $P(s)$ at $s=1$
closest to power x^{ρ}	the other singularities for $s = \rho$ a zero of the $\zeta(s)$

Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon > 0$ there exists a constant C such that

$$|\pi(x) - \operatorname{Li}(x)| \leq C \cdot x^{a+\epsilon}$$

The Riemann Hypothesis says that a = 1/2. (Go back to wolframcloud.com?)

Prime Gaps

Prime Number Theorem

Goldbach's Conjecture

Goldbach's Conjecture

Conjecture (Goldbach)

• Every integer > 5 can be written as the sum of three primes.

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.

It turns out the two bullet points above are equivalent.

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.

It turns out the two bullet points above are equivalent.

Conjecture (weak Goldbach)

Every odd integer > 5 can be written as the sum of three primes.

• "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)

• "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)

$$\lim_{x \to \infty} \frac{\text{number of even } n \leq x \text{ satisfying Goldbach}}{\text{number of even } n \leq x} = 1.$$

• "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)

$$\lim_{x \to \infty} \frac{\text{number of even } n \leqslant x \text{ satisfying Goldbach}}{\text{number of even } n \leqslant x} = 1.$$

• The weak Goldbach conjecture is true (Helfgott, 2013)

Thanks for coming!!

