# Hilbert's $8^{\text {th }}$ Problem 

Brandon Alberts<br>University of Connecticut Math Club

October 16, 2019

## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

- primes: $2,3,5,7,11,13,17, \ldots$


## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

- primes: $2,3,5,7,11,13,17, \ldots$
- composites: $4,6,8,9, \ldots$


## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

- primes: $2,3,5,7,11,13,17, \ldots$
- composites: $4,6,8,9, \ldots$


## Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

- primes: $2,3,5,7,11,13,17, \ldots$
- composites: $4,6,8,9, \ldots$


## Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

- $4=2 \cdot 2,6=2 \cdot 3, \ldots$


## Prime Numbers

## Definition

An integer $>1$ is called a prime number if its only divisors are 1 and itself.

- primes: $2,3,5,7,11,13,17, \ldots$
- composites: $4,6,8,9, \ldots$


## Theorem (Fundamental Theorem of Arithmetic (Euclid 300BC))

Every integer > 1 can be written as a product of prime numbers in exactly one way (up to reordering).

- $4=2 \cdot 2,6=2 \cdot 3, \ldots 236=2 \cdot 2 \cdot 59, \ldots$

What about 1?

## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time.

## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

- $12=2 \cdot 2 \cdot 3$


## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

- $12=2 \cdot 2 \cdot 3=2 \cdot 2 \cdot 3 \cdot 1$


## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

- $12=2 \cdot 2 \cdot 3=2 \cdot 2 \cdot 3 \cdot 1=2 \cdot 2 \cdot 3 \cdot 1 \cdot 1=\ldots$


## What about 1?

There is some real history about whether mathematicians have considered 1 to be a prime number, and the answer has changed over time. (In fact, there have been times where 1 was not even considered a number, let alone a prime.)

In modern days, it generally accepted that 1 is not a prime.

- $12=2 \cdot 2 \cdot 3=2 \cdot 2 \cdot 3 \cdot 1=2 \cdot 2 \cdot 3 \cdot 1 \cdot 1=\ldots$

1 has some very different properties compared to other positive integers, and is sometimes called a unit.

How many prime numbers are there?

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.
Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the first $n$ prime numbers.

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.
Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the first $n$ prime numbers.
Let $N=p_{1} p_{2} \cdots p_{n}+1 . N>1$, so it can be written as a nonempty product of prime numbers.

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.
Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the first $n$ prime numbers.
Let $N=p_{1} p_{2} \cdots p_{n}+1 . N>1$, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number $\ell$ dividing $N$.

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.
Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the first $n$ prime numbers.
Let $N=p_{1} p_{2} \cdots p_{n}+1 . N>1$, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number $\ell$ dividing $N$.

None of $p_{1}, p_{2}, \ldots, p_{n}$ divide $N$.

## How many prime numbers are there?

## Theorem (Euclid, 300BC)

There are infinitely many prime numbers.
Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the first $n$ prime numbers.
Let $N=p_{1} p_{2} \cdots p_{n}+1 . N>1$, so it can be written as a nonempty product of prime numbers. In particular, there exists at least one prime number $\ell$ dividing $N$.

None of $p_{1}, p_{2}, \ldots, p_{n}$ divide $N$. Thus $\ell \neq p_{1}, p_{2}, \ldots, p_{n}$, so $\ell$ must be a new prime number not on our original list.

## How do we find prime numbers?

Sieve of Eratosthenes

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

## How do we find prime numbers?

Sieve of Eratosthenes

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

## How do we find prime numbers?

Sieve of Eratosthenes

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

How do we find prime numbers?

Sieve of Eratosthenes


How do we find prime numbers?

Sieve of Eratosthenes

|  | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |

How do we find prime numbers?

Sieve of Eratosthenes

|  | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |
| 11 |  | 13 |  | 17 |
|  |  | 23 | 25 |  |
| 31 |  | 35 | 37 | 29 |
| 41 | 43 |  | 47 | 49 |
|  | 53 | 55 |  | 59 |
| 61 |  | 65 | 67 |  |
| 71 | 73 |  | 77 | 79 |
|  |  | 83 | 85 |  |
| 91 |  | 95 | 97 | 89 |

How do we find prime numbers?

Sieve of Eratosthenes

|  | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |
| 11 |  | 13 |  | 17 |
|  | 23 | 25 |  | 19 |
| 31 |  | 35 | 37 |  |
| 41 | 43 |  | 47 | 49 |
|  | 53 | 55 |  | 59 |
| 61 |  | 65 | 67 |  |
| 71 | 73 |  | 77 | 79 |
|  |  | 83 | 85 |  |
| 91 |  | 95 | 97 | 89 |

## How do we find prime numbers?

Sieve of Eratosthenes


## How do we find prime numbers?

Sieve of Eratosthenes


## How do we find prime numbers?

Sieve of Eratosthenes

|  | 3 | 5 | 7 |  |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 13 |  | 17 | 19 |
|  | 23 |  |  | 29 |
| 31 |  |  | 37 |  |
| 41 | 43 |  | 47 |  |
|  | 53 |  |  | 59 |
| 61 |  |  | 67 |  |
| 71 | 73 |  |  | 79 |
|  | 83 |  |  | 89 |
|  |  |  | 97 |  |

## How do we find prime numbers?

Sieve of Eratosthenes


How do we find prime numbers?
Sieve of Eratosthenes


## Primes in Arithmetic Progressions

## Theorem (Dirichlet, 1837)

Given integers a and $d$ with share no common divisors larger than 1, the arithmetic progression

$$
a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, \ldots
$$

has infinitely many prime numbers.

## Primes in Arithmetic Progressions

## Theorem (Dirichlet, 1837)

Given integers a and $d$ with share no common divisors larger than 1, the arithmetic progression

$$
a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, \ldots
$$

has infinitely many prime numbers.

- The numbers 3 and 10 share no common divisors larger than 1 : $3,13,23,33,43,53,63,73,83,93,103, \ldots$


## Primes in Arithmetic Progressions

## Theorem (Dirichlet, 1837)

Given integers $a$ and $d$ with share no common divisors larger than 1 , the arithmetic progression

$$
a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, \ldots
$$

has infinitely many prime numbers.

- The numbers 3 and 10 share no common divisors larger than 1 : $3,13,23,33,43,53,63,73,83,93,103, \ldots$
- The numbers 1 and 4 share no common divisors larger than 1 : $1,5,9,13,17,21,25,29,33,37,41, \ldots$


## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

- $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(71,73), \ldots$


## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

- $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(71,73), \ldots$

We can ask a similar question about other constellations, such as triples $(p, p+2, p+6)$ such that $p, p+2$, and $p+6$ are all prime.

## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

- $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(71,73), \ldots$

We can ask a similar question about other constellations, such as triples $(p, p+2, p+6)$ such that $p, p+2$, and $p+6$ are all prime.

Trivial cases: $\left(p+a_{0}, p+a_{1}, \ldots, p+a_{k}\right)$ such that there exists an integer $n$ for which the remainders of $a_{0}, a_{1}, \ldots, a_{k}$ divided by $n$ cover all the integers $0,1,2, \ldots, n-1$ (i.e., $\left\{a_{0}, a_{1}, \ldots, a_{k} \bmod n\right\}=\mathbb{Z} / n \mathbb{Z}$ ).

## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

- $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(71,73), \ldots$

We can ask a similar question about other constellations, such as triples $(p, p+2, p+6)$ such that $p, p+2$, and $p+6$ are all prime.

Trivial cases: $\left(p+a_{0}, p+a_{1}, \ldots, p+a_{k}\right)$ such that there exists an integer $n$ for which the remainders of $a_{0}, a_{1}, \ldots, a_{k}$ divided by $n$ cover all the integers $0,1,2, \ldots, n-1$ (i.e., $\left\{a_{0}, a_{1}, \ldots, a_{k} \bmod n\right\}=\mathbb{Z} / n \mathbb{Z}$ ).

- $(p, p+2, p+4)$, at least one of $p, p+2$, or $p+4$ is divisible by 3 , and so is not prime if $p>3$.


## Twin Prime Conjecture

## Conjecture (Twin Prime Conjecture)

The are infinitely many pairs of positive integers $(p, p+2)$ for which $p$ and $p+2$ are both prime.

- $(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(71,73), \ldots$

We can ask a similar question about other constellations, such as triples $(p, p+2, p+6)$ such that $p, p+2$, and $p+6$ are all prime.

Trivial cases: $\left(p+a_{0}, p+a_{1}, \ldots, p+a_{k}\right)$ such that there exists an integer $n$ for which the remainders of $a_{0}, a_{1}, \ldots, a_{k}$ divided by $n$ cover all the integers $0,1,2, \ldots, n-1$ (i.e., $\left\{a_{0}, a_{1}, \ldots, a_{k} \bmod n\right\}=\mathbb{Z} / n \mathbb{Z}$ ).

- $(p, p+2, p+4)$, at least one of $p, p+2$, or $p+4$ is divisible by 3 , and so is not prime if $p>3$.
Nontrivial cases: there is not single case which is proven!


## Infinite series

## Infinite series

Theorem (Euler, 1737)

$$
\sum_{p \text { prime }} \frac{1}{p}=\infty
$$

## Infinite series

Theorem (Euler, 1737)

$$
\sum_{p \text { prime }} \frac{1}{p}=\infty
$$

Proving this result is an alternative way to show that there are infinitely many primes.

## Infinite series

## Theorem (Euler, 1737)

$$
\sum_{p \text { prime }} \frac{1}{p}=\infty
$$

Proving this result is an alternative way to show that there are infinitely many primes.

Can we show that

$$
\sum_{\substack{(p, p+2) \\ p, p+2 \text { prime }}} \frac{1}{p}+\frac{1}{p+2}=\infty
$$

as a way to prove the twin prime conjecture?

## Infinite series

Theorem (Euler, 1737)

$$
\sum_{p \text { prime }} \frac{1}{p}=\infty
$$

Proving this result is an alternative way to show that there are infinitely many primes.

## Theorem (Brun, 1919)

$$
\sum_{\substack{(p, p+2) \\ p, p+2 \text { prime }}} \frac{1}{p}+\frac{1}{p+2}<\infty
$$

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ?

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At worst:

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At worst:

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily large.


## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At worst:

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between $N$ and $2 N$. This implies $p_{n}<p_{n+1}<2 p_{n}$.


## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At worst:

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between $N$ and $2 N$. This implies $p_{n}<p_{n+1}<2 p_{n}$.

This bound can be improved so that $p_{n+1}<p_{n}^{\theta}$ for some $\theta<1$. The best known bound is given by $\theta=0.525$ (Baker, Harmon, Pintz 2001).

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ?
At worst:

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between $N$ and $2 N$. This implies $p_{n}<p_{n+1}<2 p_{n}$.

This bound can be improved so that $p_{n+1}<p_{n}^{\theta}$ for some $\theta<1$. The best known bound is given by $\theta=0.525$ (Baker, Harmon, Pintz 2001).

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily larger than $\log \left(p_{n}\right)$ (Westzynthius, 1931).


## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ?
At worst:

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily large.
- Bertrand's Postulate (Chebyshev, 1894): there is always a prime between $N$ and $2 N$. This implies $p_{n}<p_{n+1}<2 p_{n}$.

This bound can be improved so that $p_{n+1}<p_{n}^{\theta}$ for some $\theta<1$. The best known bound is given by $\theta=0.525$ (Baker, Harmon, Pintz 2001).

- The gap between $p_{n}$ and $p_{n+1}$ can be arbitrarily larger than $\log \left(p_{n}\right)$ (Westzynthius, 1931).

In particular, $\frac{p_{n+1}-p_{n}}{\log \left(p_{n}\right)}$ is an unbounded sequence.

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At best:

## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At best:

- The Twin Prime Conjecture predicts that the gap $p_{n+1}-p_{n}$ is equal to 2 infinitely many times.


## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At best:

- The Twin Prime Conjecture predicts that the gap $p_{n+1}-p_{n}$ is equal to 2 infinitely many times.
- (Zhang, 2013) The gap $p_{n+1}-p_{n}$ is smaller than 70 million infinitely many times


## What do we know?

How far do we have to go from one prime $p_{n}$ to the next prime $p_{n+1}$ ? At best:

- The Twin Prime Conjecture predicts that the gap $p_{n+1}-p_{n}$ is equal to 2 infinitely many times.
- (Zhang, 2013) The gap $p_{n+1}-p_{n}$ is smaller than 70 million infinitely many times
- A polymath project has improved this number to 246, refining Zhang's approach.

How common are prime numbers on average?

# How common are prime numbers on average? 

Answer: Not very

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$.

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$. Less than $17 \%$ of numbers less than 1000 are prime.

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$. Less than $17 \%$ of numbers less than 1000 are prime. In fact, we know that:

$$
\lim _{x \rightarrow \infty} \frac{\text { number of primes below } x}{x}=0
$$

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$. Less than $17 \%$ of numbers less than 1000 are prime. In fact, we know that:

$$
\lim _{x \rightarrow \infty} \frac{\text { number of primes below } x}{x}=0
$$

The Prime Number Theorem is a way to quantify how quickly this proportion tends to zero.

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$. Less than $17 \%$ of numbers less than 1000 are prime. In fact, we know that:

$$
\lim _{x \rightarrow \infty} \frac{\text { number of primes below } x}{x}=0
$$

The Prime Number Theorem is a way to quantify how quickly this proportion tends to zero.

$$
\pi(x)=\text { number of primes below } x
$$

## How common are prime numbers on average?

Answer: Not very
We found 25 primes below 100 using the sieve of Eratosthenes, which is about $25 \%$. Less than $17 \%$ of numbers less than 1000 are prime. In fact, we know that:

$$
\lim _{x \rightarrow \infty} \frac{\text { number of primes below } x}{x}=0
$$

The Prime Number Theorem is a way to quantify how quickly this proportion tends to zero.

$$
\pi(x)=\text { number of primes below } x
$$

(Go to wolframcloud.com)

## Prime Number Theorem

Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
$$

## Prime Number Theorem

## Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
$$

Also written:

$$
\pi(x) \sim \frac{x}{\ln (x)}
$$

## Prime Number Theorem

## Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
$$

Also written:

$$
\pi(x) \sim \frac{x}{\ln (x)}
$$

This says that the percentage of primes below $x$ is about $1 / \ln (x)$.

## Prime Number Theorem

## Theorem (Prime Number Theorem (Poussin, Hadamard 1896))

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
$$

Also written:

$$
\pi(x) \sim \frac{x}{\ln (x)}
$$

This says that the percentage of primes below $x$ is about $1 / \ln (x)$.
We can interpret this "heuristically" to say that the probability that $n$ is prime is $1 / \ln (n)$.

Heuristic argument for the twin prime conjecture

## Heuristic argument for the twin prime conjecture

- The probability that $n$ is prime is heuristically $1 / \ln (n)$.


## Heuristic argument for the twin prime conjecture

- The probability that $n$ is prime is heuristically $1 / \ln (n)$.
- The probability of both $n$ and $n+2$ being prime is heuristically

$$
\frac{1}{\ln (n) \ln (n+2)}
$$

## Heuristic argument for the twin prime conjecture

- The probability that $n$ is prime is heuristically $1 / \ln (n)$.
- The probability of both $n$ and $n+2$ being prime is heuristically

$$
\frac{1}{\ln (n) \ln (n+2)}
$$

- The expected number of pairs $(n, n+2)$ for which both $n$ and $n+2$ are prime is

$$
\sum_{n=2}^{\infty} \frac{1}{\ln (n) \ln (n+2)}
$$

## Heuristic argument for the twin prime conjecture

- The probability that $n$ is prime is heuristically $1 / \ln (n)$.
- The probability of both $n$ and $n+2$ being prime is heuristically

$$
\frac{1}{\ln (n) \ln (n+2)}
$$

- The expected number of pairs $(n, n+2)$ for which both $n$ and $n+2$ are prime is

$$
\sum_{n=2}^{\infty} \frac{1}{\ln (n) \ln (n+2)}
$$

- This is a divergent sum by comparison with $1 / n$.


## A "better" Prime Number Theorem

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## Theorem (Prime Number Theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\operatorname{Li}(x)}=1
$$

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## Theorem (Prime Number Theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\operatorname{Li}(x)}=1
$$

Also written:

$$
\pi(x) \sim \operatorname{Li}(x)
$$

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## Theorem (Prime Number Theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\operatorname{Li}(x)}=1
$$

Also written:

$$
\pi(x) \sim \operatorname{Li}(x) .
$$

What makes this better?

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## Theorem (Prime Number Theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\operatorname{Li}(x)}=1
$$

Also written:

$$
\pi(x) \sim \operatorname{Li}(x)
$$

What makes this better?

$$
|\pi(x)-\operatorname{Li}(x)| \text { is "small" }
$$

## A "better" Prime Number Theorem

Define the logarithmic integral function by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\ln (t)} d t
$$

## Theorem (Prime Number Theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\operatorname{Li}(x)}=1
$$

Also written:

$$
\pi(x) \sim \operatorname{Li}(x)
$$

What makes this better?

$$
|\pi(x)-\operatorname{Li}(x)| \text { is "small" }
$$

(Go back to wolframcloud.com)

## The Riemann Hypothesis?

## The Riemann Hypothesis?

## Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.

## The Riemann Hypothesis?

## Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.
For $s=\sigma+$ it a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

## The Riemann Hypothesis?

## Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.
For $s=\sigma+$ it a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

- What is $\zeta(s)$ at other complex numbers?


## The Riemann Hypothesis?

## Conjecture (Riemann Hypothesis)

All the nontrivial zeroes of the Riemann zeta function have real part 1/2.
For $s=\sigma+$ it a complex number with $\sigma>1$ the Riemann zeta function is defined by the convergent series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

- What is $\zeta(s)$ at other complex numbers?
- What does this have to do with the prime numbers?


## Relation to the primes

## Relation to the primes

- $\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}$


## Relation to the primes

- $\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}$
- Apply Taylor series to the logarithm and rearrange to get

$$
\sum_{p \text { prime }} \frac{1}{p^{s}}=\log \zeta(s)-\sum_{k=2}^{\infty} \sum_{p \text { prime }} \frac{1}{k p^{k s}}
$$

## Relation to the primes

- $\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}$
- Apply Taylor series to the logarithm and rearrange to get

$$
\sum_{p \text { prime }} \frac{1}{p^{s}}=\log \zeta(s)-\sum_{k=2}^{\infty} \sum_{p \text { prime }} \frac{1}{k p^{k s}}
$$

- The series $\sum_{k=2}^{\infty} \sum_{p} \frac{1}{\text { prime }} \frac{1}{k p^{k s}}$ is convergent for $\operatorname{Re}(s)>1 / 2$.


## Relation to the primes

- $\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}$
- Apply Taylor series to the logarithm and rearrange to get

$$
\sum_{p \text { prime }} \frac{1}{p^{s}}=\log \zeta(s)-\sum_{k=2}^{\infty} \sum_{p \text { prime }} \frac{1}{k p^{k s}}
$$

- The series $\sum_{k=2}^{\infty} \sum_{p} \frac{1}{k p^{k s}}$ is convergent for $\operatorname{Re}(s)>1 / 2$.
- The function $\log \zeta(s)$ has singularities at
- $s=1$, because $\zeta(s)$ has a singularity at $s=1$,


## Relation to the primes

- $\zeta(s)=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}$
- Apply Taylor series to the logarithm and rearrange to get

$$
\sum_{p \text { prime }} \frac{1}{p^{s}}=\log \zeta(s)-\sum_{k=2}^{\infty} \sum_{p \text { prime }} \frac{1}{k p^{k s}}
$$

- The series $\sum_{k=2}^{\infty} \sum_{p} \frac{1}{k p^{k s}}$ is convergent for $\operatorname{Re}(s)>1 / 2$.
- The function $\log \zeta(s)$ has singularities at
- $s=1$, because $\zeta(s)$ has a singularity at $s=1$,
- $s=\rho$ a zero of $\zeta(s)$, because $\log (z)$ has a singularity at $z=0$.


## Generating functions

## Generating functions

| arithmetic | complex analysis |
| :---: | :---: |
| prime numbers | $P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}$ |

## Generating functions

| arithmetic | complex analysis |
| :---: | :---: |
| prime numbers | $P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}$ |

## Generating functions

| arithmetic | complex analysis |
| :---: | :---: |
| prime numbers | $P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}$ |
| bounds on the growth of $\pi(x)$ | places where $P(s)$ converges |

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ )
complex analysis

$$
P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}
$$

places where $P(s)$ converges

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ ) the first singularity of $P(s)$ at $s=1$

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ ) closest to power $x^{\rho}$
complex analysis

$$
P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}
$$

places where $P(s)$ converges
the first singularity of $P(s)$ at $s=1$
the other singularities for $s=\rho$ a zero of the $\zeta(s)$

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ ) closest to power $x^{\rho}$
complex analysis

$$
P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}
$$

places where $P(s)$ converges
the first singularity of $P(s)$ at $s=1$
the other singularities for $s=\rho$ a zero of the $\zeta(s)$

## Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon>0$ there exists a constant $C$ such that

$$
|\pi(x)-\operatorname{Li}(x)| \leqslant C \cdot x^{a+\epsilon}
$$

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ ) closest to power $x^{\rho}$
complex analysis

$$
P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}
$$

places where $P(s)$ converges
the first singularity of $P(s)$ at $s=1$

## Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon>0$ there exists a constant $C$ such that

$$
|\pi(x)-\operatorname{Li}(x)| \leqslant C \cdot x^{a+\epsilon}
$$

The Riemann Hypothesis says that $a=1 / 2$.

## Generating functions

arithmetic
prime numbers
bounds on the growth of $\pi(x)$
$\operatorname{Li}(x)$ (closest to power $x^{1}$ ) closest to power $x^{\rho}$
complex analysis

$$
P(s)=\sum_{p \text { prime }} \frac{1}{p^{s}}
$$

places where $P(s)$ converges
the first singularity of $P(s)$ at $s=1$

## Theorem

Let a be the largest real part of a zero of $\zeta(s)$. Then for every $\epsilon>0$ there exists a constant $C$ such that

$$
|\pi(x)-\operatorname{Li}(x)| \leqslant C \cdot x^{a+\epsilon}
$$

The Riemann Hypothesis says that $a=1 / 2$.
(Go back to wolframcloud.com?)

## Goldbach's Conjecture

## Goldbach's Conjecture

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.


## Goldbach's Conjecture

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.


## Goldbach's Conjecture

Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.

It turns out the two bullet points above are equivalent.

## Goldbach's Conjecture

## Conjecture (Goldbach)

- Every integer > 5 can be written as the sum of three primes.
- Every even integer > 2 can be written as the sum of two primes.

It turns out the two bullet points above are equivalent.

## Conjecture (weak Goldbach)

Every odd integer > 5 can be written as the sum of three primes.

## What do we know?

## What do we know?

- "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)


## What do we know?

- "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)

$$
\lim _{x \rightarrow \infty} \frac{\text { number of even } n \leqslant x \text { satisfying Goldbach }}{\text { number of even } n \leqslant x}=1
$$

## What do we know?

- "Almost all" even integers satisfy the Goldbach conjecture. (Estermann 1938)

$$
\lim _{x \rightarrow \infty} \frac{\text { number of even } n \leqslant x \text { satisfying Goldbach }}{\text { number of even } n \leqslant x}=1
$$

- The weak Goldbach conjecture is true (Helfgott, 2013)


## Thanks for coming!!

