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HILBERT'S FIRST PROBLEM: THE CONTINUUM HYPOTHESIS
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ABSTRACT

The present status of the continuum hypothesis and the genearalized
! continuum hypethesis is discussed. Both independence results and recent

positive theorems are listed. An analysis is given of the bearing on the

continuum problem of werk on large cardinals and projective sets.

1. INTRCDUCTION 1

Hilbert's First Problem is in the curious position that there is
sericus disagreement as to whether it has been sclved ana there is related
disagreement as to whether the problem, in the natural way of understanding
it, is a mathematical problem at all. ' i

The First Problem is to settle the famous continuum hypothesis (CH)

of Cantor. CH asserts that the cardinal number of the continuum {the set

of all real numbers) is ® the smallest uncountable cardinal number.

15

Equivalently, CH states that there are the same number of real numbers as

countable ordinal numbers. '

[ The generalized continuum hypothésgis {(GCH} asserts that, for every

h
N s - @ .
l infinite cardinal number Ha, 2 = §2+1. In other words, the cardinal

number of the collection of all subsets of a set of cardinality Na is

the smallest cardinal number greater than L CH is the special case
) . .
a _
2 = Ry
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Hilbert [13] himself attempted to prove CH, but he was unable to
carry the proof through to completion. In 1938 Gddel [9,10] attacked the
problem in a very surprising manner. He showed that, if the standard
Zermelo-Fraenkel (ZFC) axioms for set theofy are consistent, then there
can be no refutation of GCH fyrom these axioms. (There is a relation —-
however tenuous -- between G3del's proof and Hilbert's unsuccessful at-
tempt to prove CH.) G3del [11] conjectured that the formal ZFC axioms
de not suffice tc prove CH either and thus that CH is formally undecidable
in the theory ZFC. Tn 1863 Cohen [4] proved that this is the case.

Where do these results leave Hilbert's First Problem? From Hilbert's
formalist standpoint CH is an assertion of ideal mathematics rather than
of real mathematics. Hilbert, however, presumably thought that the
formal axioms of set théory were strong encugh to settle such propositions
as CH. It is unclear whether he would regard the G8del and Cohen results
das a solution to his problem. G&8del [11] holds that the meaning of CH is
independent cf formal axioms and that independence proofs only show the
weakness of our current axioms. In his view, CH is either true ov falsé,
and the problem of discovering which is still with us. ‘Cohen [5]
espouses a formalist positicn but still holds that we may yet bé led to a
decision about CH, specifically that we may be led to accept the negation

of CH as an axiom.
2. CH AND GCH IN ZFC

I shall return to these essentially philesophical questions later, but
first I wish to discuss the mathematical work related to CH and QCH which
grew out of the independence proofs.

Gadel's work, for reasons which are unclear, was foliowed by twenty
years of stagnation in the field of set theory. Though his proof had in—

troduced new. concepts and techniques in set theory and an interesting new

-proposition, the axiom of constructidbility, little use was put to these

new ideas until after the work of Cohen. Instead his theopem had a nega-

tive effect on some branches of set theory. For example, Gddel showed

that certain basic propositicns considered in classical descriptive sat
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theory could not be proved in ZFC. Hence thers was some danger that many

of the important questioms in this area were formally undecidable. This

tended as a practical matter to discourage work in the field, and few basic
advances were made (excepting Addison [1,2] and work of Choquet) until
recently.

Cohen's proof had quite the opposite effect. It ushered in a pericd
of intense activity in set theory. Cohen's methods were applied to every
imaginable set theoretic question, and a gréﬁt number of guestions were
shown to be undecidable in ZFC. There was even a revival of interest in f
gddel's axiom of constructibility, and many important conseguences of this !
axiom were deduced (mostly by Ronald Jensen).

The effect of independence proofs on mathematics is not entirely nega-
tive, For example, there are several cases of theorems having been proved

assuming CH where independence proofs allow one to eliminate the hypothesis

CH. TFor {a class cf) example(s), given any proposition ¢ of second order i

number theory (loosely speaking: any proposition about integers and reals ;

i
only -- e.g., not about arbitrary sets of reals) if ¢ dis provable from i
ZFC + CH then ¢ is provable from ZFC (Platek [2t], 5. Kripke, J. Silver). “]
A similar theorem is true about the negation of CH, though one must re- @
strict ¢ to be an assertion about integers alone. Such theorams are ;
special cases of a general absoluteness technique. Suppose one can prove )
in ZFC that a propositicn ¢ implies ancther proposition ¢. It is some- ‘
times the case that, given any model of ZFC, cne can extend it by Cohen's

methods to a model of>ZFC + ¢. In the larger model ¢ must be true. But

if ¢ can be proved to be sufficiently absclute, one can conclude that ¢

must be true in the original model and hence that ZFC implies ¢. Abso-
luteness of ¢ means that the truth value of ¢ is preserved under all

or a wide class of such Cchen extensions of models.

Before the wgrk of Cohen and G&del, one important restriction on the

]

ogeration Ry * 2 was known. This result of Kénig [15] states that

2 % cannot have cofinality <®,. The cofinality of a cardinal k 1is
the least cardinal A such that a set of cardinality x is always the

3]
union of A sets of cardinality smaller than «. In particular 2 °

cannct equal Rm, where w is the first infinite ordinal number.
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Cohen and R. Solovay showed (using models constructed by Cohen) that
KBnié's restricticn is the only restriction on ERO. Easton [7] attacked
the GCH using Cohen's methods. He almost showed that the operation
B, ESQ can be anything consistent with K&nig's thecrem. The "almost!
basically involves the problem of singular cardinals. . is singular if
the cofinality of § is smaller than « . Easton cculd produce medels
of ZFC with ﬁa -2 " whatever he wished on the class of regular (non-
singulapr) B, but could not at the same tin:e control the values at singular

8, For example, it is not known whether it is consistent with ZFC that
o .

Bp . W P . PR

2 @ Rn+l for n < w and 2 > Rm+l‘ (One restriction in addition to

Kdnig's has been known for some time: If « is singular and 27 = A for

all sufficiently large vy < «, then 2% = \.)

One of the major prcoblems in post-Cohen set theory has been this

singular cardinals problem. Most workers have felt that the theorems of

Easton could be extended to singular cardinals. Work of Prikry, Silver,
and Magidor has led to some consistency results, but they are partial and
the "consistency™ is relative to theories much stronger than ZFC. .Very
recently Jack Silver astonished the set-theoretic Wcrld by essentially
settling the singular cardinals problem for cardinals of cofinality greater
than ¥, -- and settling it in the "wrong" direction. A consequence of
Silver's theorem {(a thecrem of ZFC alone!) is that if L is singular of
cofinality > y_- and if 23‘3’ " 8,1, for all B< @  then 23“ L
Galvin and Hajnal [8] have extended Silver's work to compute, in a sense,
absclute bounds on 2 & fopr certain singular B, The problem of singular
cardinals. of cofinality ﬁo remains, despite this breakthrough, as puz-

zling as ever.
3. LARGE CARDINAL AXIOMS

Although the ZFC axioms are insufficient to settle CE, there is nothing
sacred about these axioms, and one might hope t*o find further axioms which
seem clearly true of our notion of set (in the same way the ZFC axioms
appear clearly true) and which do settle CH,

In the time since Cohen, there has bzen a great deal of research on

cne class of candidates for new axioms: +the so-called large cardinal
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axioms. (This area by no means began after Cohen, however. The subject
is much older, and its revival occurred before Cchen's work., For ex-

ample, [1k] and r25] are pre-Cohen.) A large cardinal axiom is, roughly
speaking, an assertion that cardinal numbers exist l.laving some property

P, such that one can prove that only very large cardinals can have P.

Examples of such P are inaccessibility and measurability. « is
. . 4 T . : LS -
inaccessible if x is regular and M<« implies” 2 < x « & 1B

measupable if there is & set A of cardinality x and a function
measurab e

defined on all subsets of A such that p ‘takes only O and 1 as values,

p{a) = 1, p is 0 on singletons, p(A-X) = 1 - w(X), and if p(A;) =0
for each 1ieI and capdinal {I) < « then M(L)Ai) = 0.

The usual large cardinal axioms cannot be proved in ZFC if it is con-
sistent. There are basically three sorts of arguments for accepting them:
analogy with ¥ reflection principles, and plausibility of consequences.

The argument from analogy with W, goes as follows: HO is inacces-—
gible, measurable, ete. Tor each of these properties P it would be
only by accident, as it were, that ‘Ho should be definaﬁle as the unique
infinite cardinal such that P (as it is an accident that man = feather-
less biped). Hence one would expect that larger cardinals having ﬁroperty
P exist.

The argument from weflectien prineiplss starts with the usual noticn
of sets as generafed by iteration of the power set oPeration. We start

with RO = the empty set. Given R for an ordinal number «, R is

a? atl

the collection of all subsets of Ré. For limit ordinals X, RL =é€x Rﬂ'
A set is anything which is a member of some R,. The formal axioms of set

theory are an attempt to descride this itevative construction. One thing

Wwe want the axioms to assert is that the construction does not stop toc
soon because the ordinal numbers are exhausted prematurely. The axiem of
replacement is intended to assert that the ordinals deo net yun out at an
unnatural point. Reflection principles are based on the idea that the
class On of ordinal numbers is so large that, for any reasonable property
F of the universe of all sets ROn’ On is not the first stage ® such

that- R, has P. Examples of “reascnable" properties are first, second,

and higher order properties. If this 1s right, then there should be
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stages Ra which look very much like R_._. It follows that there should

On
be stages Ra and Rﬁ which look very much alike. All important large

cardinal axioms which have been studied are derivable from assertions that
RQ and Rﬁ exist which are difficult tc distinguish. Of course, as the
axioms beccome stronger their link with the basic principle becomes more
and more tenuous.

A third argument for large cardinal axioms is that the theory_their
adoption gives is plausible and appealing. This is almost an empirical

argument. I shall say mcore about this view later when I discuss another

. kind of axiom to which it better applies.

The reasons advanced for adopting large cardinal axioms are -- as the
reader has surely noticed —- 1ess'compelling than the,reas&ns for adopting
ZFC. ©Cn the other hand, they are not completely negligible, and one should
bear in mind that the axioms of ZFC (and the notion of set which they sup-
posedly describe) are less compelling than the axioms ‘of number theory.

What do large cardinal axioms tell us about the continuum hypothesis?
Unfortunately they tell us very little. Large cardinal axioms tend toc be
absolute, in the sense discussed earlier. If they are true in a model of
ZFC they tend to be true in Cohen extensions of that model. This asser-
ticn can be made more precise as follows. A Cohen extension of a model M
arises from an element P of M which is a partial ordering in M. A
Cohen éxtension is mild with respect tc a cardinal « of M if cardinal
(F) <® dis true in M. ALl the standard large cardinal properties of x

are preserved under Cohen extensions mild with respect to k. The truth

value of CH, on the other hand can be changed by Cohen extensions where P

has very small cardinal in M. This means that, for a large cardinal

Vaxiom A, there are models of ZFC + A + CH and models of ZFC + A + not CH,

if there are models of ZPC + A at all.

§
Large cardinal axioms have, nonetheless, been successful in giving
partial results about the GCH. " Solovay [27] has shown that the existence

B
cf a so-called compact cardinal implies that 2 % = § for all suffi-

atl
c¢lently large singular strong limit cardinals (i.e., singular cardinals k

such that % < x implies M ¢ k) B, .
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4. PROJECTIVE SETS

We have at present no likely candidate for a new axiocm which would
settle CH., Let us despite this adopt for the moment the point of view
that CH is a meaningful proposition and ask whether there is any informa-
tion available which counts as evideﬁoe for ;r against the truth of CH.

é&del [11] cites some facts which he believes are evidence against CH.
He lists a number of known consequences cf CH which he thinks are intui-
tively implausible. These consequences assert that very thin subsets of
the real line exist of cardinality the continuum. Gddel says that such
assertions aré counterintuitive in a sense different from that in which
the existence of Peanc curves is counterintuitive. While B0del's intui-
tions should never be taken lightly, 1t is very hard tc see that the situa-
tion is different from that of Peano curves, and it is even hard for some
of us to see why the examples G&del cites are implausible at all.

Another way tc look for evidence concerning CH is to examine simple

cages. CH says that every set of reals is countable or has cardinality

8
2 %, Ve might test that assertion by looking at sets of reals which are,

in some sense simple. If such simple sets do not provide counterexamples,
wa can try toc see whether there are reasons to suspect that the simple sets
considered are in a relevant way different from arbifrary sets of reals.
The simple sets I wish to consider are the projective sets. A set of
reals is projective if it can be gotten from a Borel set via the cperations
of continuous image and complemenfation. The projective sets can be di-
vided into a hierarchy as follows: El (or analytic) sets are continuous

1

images of Borel sets, Hﬁ sets are complements of Ei sets; Zli+l sets

are continuous images of Hi sets.
N

Now every Bopel set is countable or has cayrdinal 2 ©, The same is

trge cf every Ei set. EJ% sets are always unions of Nl Borel sats,

8
or 2 9, So far CH is
* B

confirmed. It is known to be consistent with ZFC that 2 °» Rl and that

there are E% (even Hi) sets of power N It iz also consistent [12]
8

that 2 ° be as large as you wish and that there are H% sets of every

s0 = % sets are countable or have cardinal R
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8
cardihality < 2 °. Thus ZFC furnishes us with no information about

higher levels of the projective hierarchy.

Let us see if large cardinal axioms ﬁelp. Let MC be the assevtion that
measurable cardinals 8, exlst. Solevay has sgown that MC implies thét
every infinite E; set has cardinal HO or 2 ° [287]. Concerning

set has cardinal 8o, B

b2 sets, MC implies [18] that every zt 19
B

3 3

o

R or 2

2

Can we regard these facts about Ei and 2% sets as evidence for CH?

I do not think we can. For the results about the cardinalities of ;1
sets, 1 = 1, 2, are corollarie; to stronger results. Every Ei set,
i =1, 2, is countable or has a perfect subset {(assuming MC for i = 2).
Now, b& a simple application of the axiom of choice, there exists an un-
countable set with no perfect subset. Thus, while our simple sets have
the cardinalities required by CHE, this is sc because they have an
atypical property, the perfect subset property.

We might try different formulations of CH. "E‘or example, CH says that

every well-ordering of a subset of the reals has order type < w the

23
second uncountable initial ordinal. The notions of projective and Ei

relations can be defined in the obvicus way, and we can ask about the

order type of Ei well-orderings., The relevant theorems are that Z%
well~orderings are countable for i = 1 or 2, assuming MC for i = 2, 1In
other words, the.evidence suggests that simple well-crderings are count-
able and cannot even have order type ml' Once again our simple sets
have proved atypical.

There is a third formulation of CH whicﬁ is more promising. The

negation of CE says that there is a surjection

f: R w2 3

where R is the reals and wy is thought of as the set of its prede-
cessors. Now a funetion

f : R~ Ordineals

is essentially the same as a prewellordering of R. To prewellorder a

set, divide it into equivalence classes and well-order the equivalence
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prewellordering, T mean the order-type of

11-ordering of the equivalence clagses. MNow every E% prewell-

th but there is & H% .prewellordering of R

(essentially the Lebesgue decomposition of R). This

le gets are more typical with respect to pre-

wellorderings Than with respect to well—orderingé.

1 > 0 not the length of a Zli prewell-

Let ﬁn be the least ordinal

oprdering of R. Then we have

1
5l < .
2529 3

MC = &, < @

w

3

(See [18] for the last twe results.) Neither < can be improved (in

ZFC + MC) to = since CH implies that 5i <w, for all n. On the

other hand 5% = @, ig consistent with ZFC. This follows from a result

in [1931. Thus, while our gimple sets have not provably given us a counter-

example to CH, the possibility that they are counterexamples definitely

arises.

Related theorems give a similar picture:

Every =t set is a union of By Borel sets.

2
MC > BEvery E% get is a union of By Boprel sets.

Once again it is consistent that these results are not best possible, Dbut

there is no reason to believe they are not best possidle.

Measurable cardinals do not give information about higher levels of 'the

projective hierarchy, but there is another sort of "axiom" which does.

C g . A . @ .
This is the assertion projective deferminacy. Let 2 be the ceollection

Regard 2® a5 a product of

of all infinite sequences of 0's and 1's.

w copies of the discrete space ©,1} and give it the product +topclogy.

Given AC 2", the game GA is defined as follows. Flayers I and II take

turns picking 0 or 1, thus producing an element of 2%, I wins if this

element belongs to A, The noticn of a winning strategy for T or II is

defined in the obvicus way. Gy ig determined if one of the players has
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a winning strategy. Using the axiom of choice, one can construct an A

such that G is not determined (Sze [21]1). On the other hand we have

A

recently proved that G is determined for every Borel set A (the best

A
Previous result [23] concerned ¥sa sets), and MC implies [17] that Gy

is determined for every Hi set A. (The projective hierarchy is defined

in +he same way as for the reals.) Frojective determinacy (PD) is the

4.

assertion that GA is determined for every projective A,
There is no a priori evidence for PD, but there is a good deal of
& posteriori evidence for it. PD has pleasing consequences about the be-

havior of projective sets, such as: Every projective set is Lebesgue

measurable [22]; Every uncountable projective set has a perfect subset [6].
More impressive is the fact that PD allows one to extend the classical

structural theory of projective sets, which dealt only with the first two

levels of the projective hierarchy, tc a very elegant and essentially com;
plete thecry of the projective sets {(See [33, [281, [201). PD cannot be
proved in ZFC (or ZFPC + MC, though it may be provable from large cardinal
axioms), but it is not unreasonable to suspect that it may be true.

All the conseguences of MC concerning the projective sets also follow

from PD. Furthermore [18]

1
FD + 64 2wy s

PD = Every Zﬁ set is a union of §, Borel sets.

Concerning higher levels one has '

1 )+

1
PD + § < (62n+l

2n+2 —

where o is the least initial ordinal greater than o. Thus PD extends
the pattern derived from MC (which extends that derived in ZFC alone) and

reinforces the suggestion that the answer to CH may be negative.

Throughout the latter part of my discussion, I have been assuming a

naive and unecritical attitude toward CH. While this is in fact my atti-

tude, I by no means wish to dismiss the oppesite viewpoint. Those who

argue that the concept of set is not sufficiently clear to fix the truth-
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value of CH have a position which is at present difficult to assail. As

long as no new axiom is founéd which decides CH, their case will continue

to grow stronger, and our asserticn that the meaning of CH is clear will

sound more and more empty.

R TR
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