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Abstract

Every rational number can be categorized as one of two types: algebraic or
transcendental. This paper will discuss properties of these two types as well
as attempt to categorize two famous constants, e and π. We will then apply
our results to answer a classic question in geometry.

1 Introduction

Abstract algebra is a field that results from stripping away artificial structures we
impose on our own number systems, and building up from basic concepts. Ultimately,
we reduce everything to sets with operations on them, and yet this can give us
surprisingly deep and fundamental results in every area of mathematics.

This paper is organized as follows. In Section 2, we will discuss how algebra can
be used to organize all numbers into two categories: algebraic and transcendental.
In Section 3, we will place the famous constants e and π in the latter, and then prove
the impossibility of the ancient question of squaring the circle.
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2 Background

2.1 Fields

We review some basic concepts from field theory. A more comprehensive introduction
to fields can be found in [BB06].

Definition 2.1. Let F be a set equipped with addition (+) and multiplication (·). F
is a field if the following properties.

1. (F, +) is an abelian group.

2. (F \ {0}, · ) is an abelian group.

3. a · (b+ c) = a · b+ a · c for a, b, c ∈ F .

Loosely speaking, a field is a set in which you can add, subtract, multiply, and
divide any element with any other element (except dividing by 0) and remain in the
set.

Definition 2.2. Let K ⊆ F . Then F is called an extension field of K if K is a
field under the operations of F . In this case, K is called the base field.

2.2 Algebraic and Transcendental Numbers

Definition 2.3. Let F be an extension field of K and let u ∈ F . If there exists
a polynomial f(x) with coefficients in K such that f(u) = 0, then u is said to be
algebraic over K. If no such polynomial exists, then u is said to be transcendental
over K.

Example 2.4. The constant
√

2 is algebraic over Q because it is a root of the poly-
nomial x2 − 2.

Theorem 2.5. Algebraic numbers (over Q) form a field.

Proof. Let α, β be algebraic numbers and let m,n be the minimum integers such
that the following polynomials are irreducible (not factorable).

αm = am−1α
m−1 + · · ·+ a1α + a0

βn = bn−1β
n−1 + · · ·+ b1β + b0
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Now consider the mn+ 1 numbers:

1, α + β, (α + β)2, · · · , (α + β)mn

With some manipulation, we see that thesemn+1 numbers can be written as Q-linear
(having coefficients in Q) combinations of the mn numbers αiβj for i = 0, 1, · · · , n−1
and j = 0, 1, · · · ,m−1. Thus the mn+ 1 numbers above are linearly dependent and
α + β is algebraic.

The proof that αβ is algebraic is similar.
So we have shown that algebraic numbers are closed under addition and multipli-

cation, and it is clear to see that they are also closed under subtraction and division
by nonzero elements.

Corollary 2.6. The complex number a+ bi is algebraic over Q if and only if a and
b are both algebraic over Q.

Proof. Suppose a and b are algebraic. Note that i is the root of the polynomial
x2 + 1 = 0, thus i is algebraic. So a+ bi is a linear combination of algebraic numbers
which is algebraic by Theorem 2.5.

If a + bi is algebraic and f(a + bi) = 0 for some polynomial f(x) over Q, then
f(a− bi) = 0 because the coefficients must be rational. So

a =
1

2
((a+ bi) + (a− bi)).

b =
1

2i
((a+ bi)− (a− bi))

Thus a and b are both algebraic.

Theorem 2.7. Algebraic numbers are countable

Proof. Enumerate polynomials of the form f(x) = anx
n + · · · a1x+ a0, with aj ∈ Q,

by
if = |an|+ |an−1|+ · · ·+ |a0|.

Since Q is countable, these polynomials are countable. By the fundamental theorem
of algebra, each index if corresponds to finitely many (at most deg f) new algebraic
numbers. Furthermore, we obtain every algebraic number this way because every
polynomial has an index, so algebraic numbers are countable.

Corollary 2.8. Almost all real numbers are transcendental.

Proof. Since R is uncountable and algebraic numbers are countable by Theorem 2.7,
transcendental numbers must be uncountable.
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3 Transcendence of e and π

3.1 Important Theorems

We describe a few important theorems on the properties of e and π.

Theorem 3.1. The numbers e and π are transcendental over Q

A full proof of this theorem can be found in [Niv05]. The proof for e was originally
published by Charles Hermoite in 1873, and the proof for π was originally proved by
Ferdinand Lindemann in 1882. Ultimately, the proof that π is transcendental follows
from the following theorem, proved by Lindemann.

Theorem 3.2. Given distinct algebraic numbers α1, · · · , αn, the numbers eα1 , · · · , eαn

are linearly independent.

Then, if π were algebraic, iπ would be algebraic, and eiπ = −1 would be tran-
scendental, a contradiction. Thus π is transcendental. Similarly, for any algebraic
α, trigonometric and inverse trigonometric functions, as well as the logarithm of α
(e.g. sin(α), cos−1(α), log(α)) are all transcendental.

This raises an interesting question. By Theorem 2.5, sums and products of al-
gebraic numbers are also algebraic, but the same cannot be said for transcendental
numbers. It is actually an open question whether or not the values π + e or πe are
transcendental, or even irrational.

However, we can say the following:

Theorem 3.3. At least one of e+ π or eπ is irrational.

Proof. Supposed e+ π and eπ are rational. Then the polynomial x2 + (e+ π)x+ eπ
has rational coefficients and is satisfied by e and π, contradicting the fact that e and
π are transcendental over Q.

3.2 Squaring the Circle

Lindemann’s proof can be applied to a question posed by ancient geometers:

Question 3.4. Is it possible to construct a square with the same area as a circle with
only straightedge and compass?

Lindemann’s proof shows that the answer is indeed no. All geometric construc-
tions have algebraic lengths, so constructing a line of length

√
π would mean that√

π is algebraic, a contradiction.
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