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1. Introduction

Generating functions are certain kinds of power series that can be used to study sequences
of numbers. We can apply concepts learned in calculus, such as partial fraction decompo-
sitions, to a generating function in order to help us find explicit formulas for recursively
defined sequences like the Fibonacci numbers. Sequences defined in other ways have gener-
ating functions which need other ideas from real and complex analysis (radius of convergence
and infinite products) in order to be studied effectively.

2. Definition and Examples

If we want to study a sequence of numbers a0, a1, a2, . . . , we can put them all together as
the coefficients of a power series.

Definition 2.1. The generating function of a sequence a0, a1, a2, . . . is the power series
f(x) =

∑
n≥0 anx

n = a0 + a1x+ a2x
2 + · · · .

Another power series associated to the sequence {an}n≥0 is
∑

n≥0(an/n!)xn, which is called
the exponential generating function of the sequence. What we defined above, by comparison
to that, is called the ordinary generating function of the sequence. Since it is the only kind
we’ll use, we will just use the label “generating function” as above.

Example 2.2. The constant sequence {1, 1, 1, . . . } has generating function

1 + x+ x2 + x3 + · · · =
∑
n≥0

xn =
1

1− x
.

This is the geometric series.

Example 2.3. For any number c, the sequence {1, c, c2, c3, . . . } of powers of c has generating
function

1 + cx+ c2x2 + c3x3 + · · · =
∑
n≥0

cnxn =
∑
n≥0

(cx)n =
1

1− cx
.

The previous example is the special case c = 1.

Example 2.4. The sequence {1, 2, 3, . . . } of positive integers has generating function

1 + 2x+ 3x2 + 4x3 + · · · =
∑
n≥0

(n+ 1)xn.

It’s not clear at first if this power series has a simple closed formula. But if we look at the
terms in it, like 3x2, we recognize them as derivatives: 3x2 = (x3)′. In fact, this power series
is the derivative of

x+ x2 + x3 + x4 + · · · =
∑
n≥0

xn+1 =
∑
n≥0

x · xn = x
∑
n≥0

xn =
x

1− x
.

If we differentiate x/(1− x), we get 1/(1− x)2, so

1 + 2x+ 3x2 + 4x3 + · · · =
(

x

1− x

)′
=

1

(1− x)2
.
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The sequences appearing in these examples are ones which we think we understand pretty
well (say, in terms of having simple formulas for the numbers in the sequence). The power
of generating functions comes from applying them to a sequence whose terms we might not
understand well. A great example of this, which we look at next, is the generating function
of the Fibonacci numbers.

3. Generating Functions for Recursions

The Fibonacci numbers are defined recursively by the rules F1 = 1, F2 = 1, and for n > 2

(3.1) Fn = Fn−1 + Fn−2.

The first 15 Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610.

It is natural to ask if there is a formula for Fn which doesn’t require us to compute the
previous terms in the sequence to find it. Let’s look at the generating function for the
Fibonacci numbers and see what insight we get.

First we must define F0. It is natural to choose F0 so the recursion (3.1) holds when n = 2:
F2 = F1 +F0, so we define F0 = 0. The generating function of the sequence F0, F1, F2, . . . is

F (x) =
∑
n≥0

Fnx
n = x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · · .

The constant term is 0 since F0 = 0. We can use the recursion (3.1) to find a simple formula
for F (x). Since Fn = Fn−1 + Fn−2 when n ≥ 2, let’s separate the terms in F (x) for n ≥ 2
from the earlier terms and then apply the recursion to the coefficients:

F (x) = x+
∑
n≥2

Fnx
n

= x+
∑
n≥2

(Fn−1 + Fn−2)x
n

= x+
∑
n≥2

(Fn−1x
n + Fn−2x

n)

= x+
∑
n≥2

Fn−1x
n +

∑
n≥2

Fn−2x
n.(3.2)

The first series in (3.2) is∑
n≥2

Fn−1x
n = F1x

2 + F2x
3 + F3x

4 + · · · = x(F1x+ F2x
2 + F3x

3 + · · · ) = xF (x).

(We used F0 = 0 here.) In a similar way, the second series in (3.2) is∑
n≥2

Fn−2x
n = x2F (x).

Substituting these into (3.2),

F (x) = x+ xF (x) + x2F (x) =⇒ (1− x− x2)F (x) = x =⇒ F (x) =
x

1− x− x2
.

This is quite interesting: the generating function of the Fibonacci sequence is a simple ratio
of polynomials. What makes this significant is that we can now turn around and expand
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x/(1−x−x2) back into a power series in a completely different way, using partial fractions.
Comparing this with the original definition of F (x) as a generating function will then give
us a formula for Fn.

The denominator 1− x− x2 can be factored as (1− λx)(1− µx), where

λ =
1 +
√

5

2
≈ 1.618 and µ =

1−
√

5

2
≈ −.618.

(Here λ and µ are not the roots, but the reciprocals of the roots of 1−x−x2.) These numbers
are related to the golden ratio ϕ = (1 +

√
5)/2 ≈ 1.61803713 since λ = ϕ and µ = −1/ϕ.

Writing

F (x) =
x

1− x− x2
=

x

(1− λx)(1− µx)
,

we can decompose F (x) into partial fractions:

(3.3)
x

(1− λx)(1− µx)
=

1/
√

5

1− λx
− 1/

√
5

1− µx
.

Using the geometric series expansion 1/(1− r) =
∑

n≥0 r
n with r = λx and r = µx,

F (x) =
1√
5

∑
n≥0

λnxn − 1√
5

∑
n≥0

µnxn

=
∑
n≥0

1√
5

(λn − µn)xn.

Therefore

(3.4)
∑
n≥0

Fnx
n =

∑
n≥0

1√
5

(λn − µn)xn.

The coefficients of like powers of x on both sides of (3.4) must be equal, so

Fn =
λn − µn

√
5

.

Substituting the golden ratio in here,

(3.5) Fn =
ϕn − (−1/ϕ)n√

5
=

1√
5
ϕn +

(−1)n+1

√
5

1

ϕn
.

We have obtained a formula for Fn, which was first found by de Moivre in 1720. As a check,
you can verify that (3.5) recovers the known values of Fn for small n. This is tedious to
work out by hand even for n = 2, and in fact the formula for Fn is not really of great use in
computing Fn. So what good is it?

First, there is the attraction of simply having a formula, which many people find worth-
while. But more importantly, (3.5) gives us some information about the rate of growth of the
Fibonacci numbers. Since 1/ϕ ≈ .618 lies between 0 and 1, the second term in the formula
for Fn tends to 0 as n → ∞. Therefore when n is large, Fn ≈ 1√

5
ϕn. (In fact, since the

second term in (3.5) is small enough, Fn is the nearest integer to 1√
5
ϕn.) So up to a scaling

factor the Fibonacci numbers grow like powers of ϕ.
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We can also use (3.5) to determine how the ratios of consecutive Fibonacci numbers,
Fn+1/Fn, behave for large n. Since Fn/ϕ

n → 1/
√

5 as n→∞ by (3.5),

Fn+1

Fn

=
Fn+1/ϕ

n

Fn/ϕn
= ϕ

Fn+1/ϕ
n+1

Fn/ϕn
→ ϕ

1/
√

5

1/
√

5
= ϕ = 1.61803713 . . . .

For instance,
F10

F9

=
55

34
≈ 1.617647 and

F15

F14

=
610

377
≈ 1.6180339.

Remark 3.1. When we set coefficients of xn on both sides of (3.4) equal, we used an
important property of a generating function: it has only one set of coefficients. If f(x) =∑

n≥0 anx
n, an = f (n)(0)/n! by Taylor’s formula, so we can recover each coefficient of f(x)

from the behavior of f(x) as a function. If a generating function did not determine its
coefficients, we couldn’t use generating functions to get formulas for the coefficients. We will
return to this point in Section 5.

Our derivation of a formula for the Fibonacci numbers can be extended to any sequence
which satisfies a recursion of the same basic form as the Fibonacci numbers.

Theorem 3.2. Let a0, a1, a2, . . . be a sequence satisfying a recursion

an = Aan−1 +Ban−2

for n ≥ 2, where A and B are constants and B 6= 0. Write 1−Ax−Bx2 = (1−λx)(1−µx),
for some nonzero numbers λ and µ. If λ 6= µ then an = c1λ

n + c2µ
n for some constants c1

and c2.

The Fibonacci numbers are the special case A = B = 1 and a0 = 0, a1 = 1.

Proof. We look at the generating function of the sequence {an}n≥0. Set

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

anx
n.

On the right side, replace an with Aan−1 +Ban−2 for n ≥ 2:

f(x) = a0 + a1x+
∑
n≥2

(Aan−1 +Ban−2)x
2

= a0 + a1x+ Ax
∑
n≥2

an−1x
n−1 +Bx2

∑
n≥2

an−2x
n−2.

Since
∑

n≥2 an−1x
n−1 = a1x+ a2x

2 + · · · = f(x)− a0 and
∑

n≥2 an−2x
n−2 = f(x),

f(x) = a0 + a1x+ Ax(f(x)− a0) +Bx2f(x) =⇒ f(x) =
a0 + (a1 − Aa0)x

1− Ax−Bx2
.

(This generalizes the Fibonacci number generating function F (x) = x/(1−x−x2).) We can
write 1−Ax−Bx2 = (1− λx)(1− µx) for some λ and µ, where λ and µ are the reciprocals
of the roots of 1− Ax− Bx2. (The number 0 is not a root since the constant term is 0, so
it makes sense to talk about reciprocals of the roots of the polynomial.) Then

f(x) =
a0 + (a1 − Aa0)x
(1− λx)(1− µx)

.
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Since we are assuming λ 6= µ, we can break this up into partial fractions:

(3.6) f(x) =
c1

1− λx
+

c2
1− µx

for some constants c1 and c2. (The numbers c1 and c2 can be described explicitly in terms of
λ, µ, a0, a1, and A, but it is slightly messy and we don’t write this down here.) Expanding
1/(1− λx) and 1/(1− µx) into geometric series in (3.6),

f(x) =
∑
n≥0

c1λ
nxn +

∑
n≥0

c2µ
nxn =

∑
n≥0

(c1λ
n + c2µ

n)xn,

so

an = c1λ
n + c2µ

n.

�

Remark 3.3. We needed B 6= 0 to know 1− Ax−Bx2 is quadratic (with two roots).

Generating functions can be applied to get an exact formula for sequences defined by any
recursion of the form

an = A1an−1 + A2an−2 + · · ·+ Aran−r

for any r. The generating function of this sequence is a ratio of polynomials with denominator
1−A1x−A2x

2−· · ·−Arx
r. See [5, Chap. 4], which includes the case where the polynomial

has a repeated root (not included in Theorem 3.2 when r = 2).

4. Generating Functions for Partitions

Consider the question: how many ways are there of making $1 using pennies, nickels,
dimes, and quarters? (We assume there is no limit on the number of available coins of each
type.) With P pennies, N nickels, D dimes, and Q quarters, we have P + 5N + 10D + 25Q
cents. Since $1 is 100 cents, our question is the same as asking for the number of solutions
to

P + 5N + 10D + 25Q = 100

where P , N , D, and Q are nonnegative integers. This is an example of a partition problem:
we are counting how many ways we can break up 100 into a sum of 1’s, 5’s, 10’s and 25’s.

Rather than attack just this particular problem, let’s encode it in a more general problem:
for any n ≥ 1, how many ways can we form n cents out of pennies, nickels, dimes, and
quarters? Let cn be that number, so cn is the number of solutions to

P + 5N + 10D + 25Q = n

in nonnegative integers P , N , D, and Q. (Our original problem about $1 is the special case
n = 100.)

For example, if n < 5 then we can only make n cents in one way, using n pennies, which
means cn = 1 for 1 ≤ n ≤ 4. When n = 5, we could use five pennies or one nickel, so c5 = 2.
Similarly, cn = 2 for 5 ≤ n < 9. To make 10 cents, we could use ten pennies, two nickels,
one dime, or one nickel and five pennies, so c10 = 4. To find a formula for cn for all n, we
will look at the generating function of the numbers cn:

C(x) =
∑
n≥0

cnx
n.
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What is c0? It wasn’t defined. Should we set it to be 0, since we need no coins to make 0
cents? No. We set c0 = 1 since there is one way of forming 0 cents out of the coins, namely
using 0 coins of each type. The number of coins used is 0, but the number of ways we use
no coins is 1, and that’s why c0 = 1.

Theorem 4.1. The generating function of the sequence {cn}n≥0 is

C(x) =
1

(1− x)(1− x5)(1− x10)(1− x25)
.

Proof. The key idea is to look at the effect of multiplying two power series. Let’s start with

1

1− x
=
∑
P≥0

xP and
1

1− x5
=
∑
N≥0

x5N .

The indices of summation are deliberately written as P and N so we see more clearly below
the connection to coin counting.

When we multiply the two series together,

1

(1− x)(1− x5)
=
∑
P≥0

xP
∑
N≥0

x5N =
∑

P,N≥0

xP+5N .

Bringing like powers of x together, we collect terms where P + 5N is the same:

1

(1− x)(1− x5)
=
∑
n≥0

#{(P,N) : P + 5N = n}xn.

The coefficients in this product count how many ways we can form n cents out of pennies
and nickels. In a similar way, writing 1/(1− x10) =

∑
D≥0 x

10D,

1

(1− x)(1− x5)(1− x10)
=

∑
P≥0

xP
∑
N≥0

x5N
∑
D≥0

x10D

=
∑

P,N,D≥0

xP+5N+10D

=
∑
n≥0

#{(P,N,D) : P + 5N + 10D = n}xn.

Finally,

1

(1− x)(1− x5)(1− x10)(1− x25)
=

∑
P≥0

xP
∑
N≥0

x5N
∑
D≥0

x10D
∑
Q≥0

x25Q

=
∑

P,N,D,Q≥0

xP+5N+10D+25Q

=
∑
n≥0

#{(P,N,D,Q) : P + 5N + 10D + 25Q = n}xn

=
∑
n≥0

cnx
n,

which is the generating function C(x) that we were looking for. �
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Using a computer algebra package, we find

1

(1− x)(1− x5)(1− x10)(1− x25)
= 1 +x+x2 +x3 +x4 + 2x5 + · · ·+ 213x99 + 242x100 + · · · ,

so c100 = 242. There are 242 ways of forming $1 out of pennies, nickels, dimes, and quarters.
Getting a formula for cn using partial fractions for C(x) is complicated because the de-

nominator in C(x) has 1 as a multiple root and its degree is large. Another approach, limited
to cases where the denominator is a product of terms of the form 1−xm, is in [3, p. 330–332].

Moving beyond coin counting, other partition problems lead to generating functions that
can be products of infinitely many terms. Here are two examples.

Example 4.2. The infinite product

1

1− x
1

1− x3
1

1− x5
1

1− x7
· · · =

∑
n1≥0

xn1

∑
n2≥0

x3n2

∑
n3≥0

x5n3

∑
n4≥0

x7n4 · · ·

=
∑
n≥0

bnx
n

has for the coefficient of xn the number of ways to write n as a sum of odd positive integers
(partitions of n into odd parts): saying n = n1 + 3n2 + 5n3 + 7n4 + · · · (with nk = 0 for large
k) uses n1 1’s, n2 3’s, n3 5’s, n4 7’s, and so on. For example, we can obtain 6 as a sum of 6
1’s, as 1 + 5, as 3 + 3, and as (1 + 1 + 1) + 3. In term of the exponents,

x6 = x · x5 = x3·2 = x3·1 · x3,
so b6 = 4.

Example 4.3. The infinite product

(1 + x)(1 + x2)(1 + x3)(1 + x4) · · · =
∑
n≥0

cnx
n

has for the coefficient of xn the number of ways to write n as a sum of different positive
integers (partitions of n into distinct parts). For example,

6 = 1 + 5 = 2 + 4 = 1 + 2 + 3,

so c6 = 4.

There is often no formula for counting partitions of various kinds, but generating functions
for partitions are nevertheless useful. Here is a striking illustration.

Theorem 4.4. The number of partitions of n into odd parts and distinct parts are equal.

Proof. It suffices to show the generating functions for the two kinds of partitions are equal.
We computed these generating functions in the previous two examples, so we want to show

(4.1)
1

(1− x)(1− x3)(1− x5)(1− x7) · · ·
?
= (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .

On the left side of (4.1), insert even-degree terms 1− x2m into the numerator and denom-
inator, so the denominator has terms for all positive integers:

1

(1− x)(1− x3)(1− x5) · · ·
=

(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) · · ·

.
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On the right side of this equation, each 1 − x2m in the numerator is divisible by 1 − xm in
the denominator. Putting such terms together, we can cancel factors:

(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) · · ·

=
1− x2

1− x
1− x4

1− x2
1− x6

1− x3
· · ·

= (1 + x)(1 + x2)(1 + x3) · · · .
This establishes (4.1). �

In [6, pp. 242–243], generating functions for partitions are used to prove every number has
a unique binary expansion (partition of n into different powers of 2). The book [1] covers
many further aspects of partitions and their generating functions.

5. Some final remarks

Our use of power series and infinite products has a serious gap: we never established
domains of convergence where our manipulations of the series and products are valid. To
say a power series has unique coefficients because of Taylor’s formula f (n)(0)/n! (see Remark
3.1) requires a positive radius of convergence. At the same time, however, our generating
functions were never numerically evaluated at any choice of x. The power series we used are
not playing the role of functions in the strict sense but are just mathematically convenient
placeholders for the coefficients.

As strange as it may seem, we don’t actually need to worry about convergence of generating
functions to make our previous work valid. There is a fully developed theory of power
series

∑
n≥0 anx

n without convergence considerations which allows addition, multiplication,
inversion, and differentiation of the series (but not numerical evaluation). This is a different
way of thinking about power series than the approach taken in calculus classes, and power
series from this point of view are called formal power series. Generating functions can
usually be treated as formal power series, which makes the lack of attention to domains of
convergence acceptable. For more information on this, see [4] and [5, Chap. 1].

Some generating functions do require serious attention to convergence issues and other
hard analysis in order to work with them. An example is the generating function that counts
representations of a positive integer as a sum of four squares. Its study uses techniques from
complex analysis. See [2, pp. 24–27].

Acknowledgments. I’d like to thank Prof. Schnerz for his help locating some references
and discussing some examples.
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