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Abstract

The game of Hex has been a popular subject of study since John Nash first began
studying it in the 1940’s. Since then, numerous variations of the game of Hex have been
created. Misere Hex, or Reverse Hex, is a variation of the game of Hex where the goal
of the game is to lose. In this paper, we determine that player 1 in Reverse Hex has a
winning strategy if the board has even dimensions, and player 2 has a winning strategy
if the board has odd dimensions. We will also briefly discuss two other variations of
the game of Hex, Vex and Y, and how their properties are similar to those of Hex and
Reverse Hex.
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1 Introduction

The game of Hex traces its origins back to 1942 when it was discovered by Danish math-
ematician Piet Hein. It was later rediscovered in 1949 by John Nash. In 1953, the game
of Hex was released by the Parkers Brothers and marketed to the public. In 1957, Martin
Gardner discussed the game of Hex in a column in Scientific American, further popularizing
the game as a subject of study among mathematicians. Today, research regarding the game
of Hex is mostly spent in developing programs that can play the game of Hex perfectly,
which has had mixed results ([PSSWO05]).

The rules of the Hex are simple. Two players take turns filling placing stones into cells,
with the objective of constructing a path connecting two opposite sides. The rules will be
explained in more depth in Section 2.2.

The game of Hex has major consequences in mathematics. It has been shown that
the game of Hex cannot end in a draw. This is known as the Hex theorem, and will be
more formally presented and explained elsewhere in this paper. More importantly, it has
been shown that the Hex theorem is equivalent to the Brouwer Fixed-Point theorem, an
important theorem in the study of topology. This has been shown in [Gal79].

The game of Hex has inspired numerous variations that have also been studied. In
particular, this paper focuses on Reverse Hex, also known as Misere Hex, or Rex. In Reverse
Hex, the goal is essentially to lose the game of Hex. These rules will be further explained in
Section 2.3.

The goal of this paper is to present a proof of who has a winning strategy in Reverse
Hex. More specifically, we will prove the following theorem taken from [L.S99].

Theorem 1.1. In Reverse Hex, player 1 has a winning strategy if the dimensions of the
board are even, and player 2 has a winning strategy if the dimensions of the board are odd.
Also, the losing player has a strategy that forces all of the cells to be filled before the other
player can win.

To further support this proof, we will also include a proof of the Hex theorem.
Theorem 1.2. The game of Hex cannot end in a draw.

However, we will slightly modify the proof so that its results more specifically discuss
Reverse Hex. In other words, we will actually prove the following theorem.

Theorem 1.3. The game of Reverse Hex cannot end in a draw.

This paper begins by providing background information in Section 2. Within this back-
ground section, in Section 2.1, we will provide a basic introduction into some game theory
terminology that will be used throughout this paper. In Section 2.2, we will provide a more
in depth description of the rules of Hex. In Section 2.3, we will provide a more in depth



description of the rules of Reverse Hex and describe the monotonicity property of Reverse
Hex that will be instrumental in proving our main theorem. In Section 2.4, we will provide
some background in graph theory that is necessary for our proof of Theorem 1.3. In Sec-
tion 3, we will present three proofs. In Section 3.1, we will first prove a graphing lemma that
will assist us in our proofs. We will then prove Theorem 1.3 using our modified proof of the
Hex theorem. In Section 3.2, we will prove our main result, Theorem 1.1. In Section 4, we
briefly discuss other variations of the game of Hex and their properties. This consists of the
game of Vex in Section 4.1, and Y in Section 4.2. We then conclude with some statements
regarding possible future research into the subject.

2 Background and Definitions

Before we can prove who has a winning strategy in Reverse Hex, we must first provide
some background. We will start by providing a basic introduction into game theory and its
terminology. We will then provide some background regarding the game of Hex as it will
make understanding Reverse Hex easier. We will then provide some background on Reverse
Hex. Lastly, we will provide a basic introduction into some graph theory terminology that
will be used in our proofs.

2.1 Game Theory

We will start with a brief introduction to some game theory terminology that will be used
throughout the paper.

Definition 2.1. (From [SG12]) A strategy is a player’s plan of action for any and every
situation that player might encounter.

Throughout this paper, the term winning strategy will be used often.

Definition 2.2. A winning strategy is a strategy that is guaranteed to result in the player
winning regardless of his or her opponent’s actions.

2.2 Hex

We will now provide an intuitive explanation of the rule of Hex.

Definition 2.3. ([Mil02]) The game Hez is a two player game played on an n x n board of
hexagonal cells, as shown in Figure 1. Each player is assigned two opposite sides, and the
players take turns placing stones on the cells until one has constructed a path connecting
their two sides.

One of the most important results about the game of Hex is given by Theorem 1.2,
often referred to as the Hex Theorem. This theorem is important, as its proof will form the
foundation for our proof that the game of Reverse Hex cannot end in a draw (Theorem 1.3).



Figure 1: Hex board (Part of Figure 4.1 in [PSSW05])

This theorem is also equivalent to the Brouwer Fixed-Point Theorem, as shown in [Gal79].
It has already been determined that the first player in Hex always has a winning strategy
([Mil02]).

2.3 Reverse Hex

We will now provide an intuitive explanation of the rules of Reverse Hex.

Definition 2.4. ([HTH12]) Reverse Hex is a variation of the game of Hex where the rules
are exactly the same, except the goal is to not construct a path connecting your two sides.
In other words, whoever is forced to complete a path connecting their two sides loses.

Reverse Hex has a very unique characteristic that is essential for proving our main theo-
rem.

Definition 2.5. ([LS99]) Suppose in a game of Reverse Hex there is a layout that is a win
for player 1. By definition there must a path of player 2’s stones connecting his two sides.
Now suppose that a subset of the empty cells were randomly filled in with either player 1’s
stones or player 2’s stones. This layout would still be a win for player 1, as it would not
affect player 2’s path. This is the monotonicity property of Reverse Hex.

2.4 Graph Theory

Given the overall graphical nature of Reverse Hex, our proofs will involve some graph theory.
Thus it is necessary to provide some background here. We begin with the definition of a
graph.

Definition 2.6. ([Ruol3]) A graph consists of a set of points called vertices and a collection
of edges that either connecting two vertices or connect a vertex to itself.

Given a graph, it is often useful to record information about the number of edges ema-
nating from the vertices of the graph.



Definition 2.7. ([Ruol3]) The degree of a vertex is the number of edges for which the vertex
is an end vertex.

As a special case, a graph may contain vertices with no edges emanating from them.

Definition 2.8. ([Ruol3]) An isolated point, or isolated vertez, is a vertex with a degree of
0.

It is often useful to study the structure of a graph by looking at certain subsets of the
graph.

Definition 2.9. ([gra]) A path is a series of vertices in a graph where every adjacent pair
of vertices are connected by an edge of the graph. A path that does not repeat vertices is
called a simple path. A path that begins and ends at the same vertex is called a circuit. A
circuit that does not repeat vertices is called a simple cycle.

3 Proofs of Theorem 1.1 and Theorem 1.3

We will prove Theorem 1.1. In order to do this, there are actually two things we must prove.
First, we will prove Theorem 1.3 which states that Reverse Hex cannot end in a draw. We
will do this by utilizing a modified version of a proof of the Hex theorem (Theorem 1.2).
Second, we will prove that the player who does not have a winning strategy has a strategy
that forces every cell to be filled before he loses. We will then show that our Theorem 1.1
flows naturally from these results.

3.1 Why Reverse Hex Cannot End in a Draw

Before we can prove which player has a winning strategy in Reverse Hex, we must first prove
that there must be a winner. In other words, we must prove Theorem 1.3, which state that
the game of Reverse Hex cannot end in a draw. However, before we can prove this, we must
first prove the following lemma from [Jinl1].

Lemma 3.1. A finite graph whose vertices have a degree of at most two must be the union
of disjoint sub graphs that are either a simple cycle, a simple path, or an isolated point.

The following proof is from [Jinl1].

Proof. We will prove Lemma 3.1 by inducting on the number of edges in the graph. We will
use G to denote a graph with k£ edges. Note that since there are no vertices with degree
greater than 2, the number of edges must be less than or equal to the number of vertices.

In the base case where there are 0 edges, all vertices will be isolated points, and thus our
lemma holds. We will now assume that G,, is the union of disjoint sub graphs that are either
a simple cycle, a simple path, or an isolated point. For G,,;1, we will remove an edge that
connects two arbitrary vertices u and v. Because v and v had at most a degree of 2, they now



Figure 2: Hex board as a planar graph (Figure 4.1 in [PSSWO05])

have at most a degree of 1. Thus, they cannot be part of any cycles. By our assumption, G,,
consists of disjoint simple cycles, disjoint paths, and isolated points. If we add back the edge
connecting vertices u and v, all sub graphs disjoint from u and v are unchanged, and those
connected to u or v are now part of either a simple path or a simple cycle. Thus, G, is
the union of disjoint sub graphs that are either a simple cycle, a simple path, or an isolated
point. Thus, our lemma holds for all graphs G such that k£ > 0.

O

With Lemma 3.1 proven, we can now proceed to prove Theorem 1.3. This proof is an
modified version of the proof of Theorem 1.2 from [PSSWO05] altered so that it applies to the
game of Reverse Hex.

Proof. There are two different cases that would result in a draw, both players winning, and
both players losing. However, it is impossible for both players to lose because the game ends
as soon as one player completes a path, so we only need to worry about the case where both
players win. We will show that both players cannot win by showing that one player must
complete a path connecting their two sides.

Think of the Hex board as a planar graph, as shown in Figure 2. Now consider a
completed game of Reverse Hex in which all the spaces are filled. We will create a graph G
by coloring all the edges that lie between two differently filled cells. Each vertex on G will
have a degree of either 0 or 2, with the exception of the four corners, which will all have a
degree of 1. Because no vertex has a degree greater than 2, we know that by Lemma 3.1
G is the union of disjoint simple cycles, simple paths, and isolated points. Because there
are exactly 4 vertices of degree 1, we will have exactly two disjoint simple paths connecting
the corners. Because they are disjointed, each path must connect either the top or bottom
corner to the left or right corner, and each path must connect different corners. This will
gives us a graph that looks like Figure 3.

Since there must always be a path connecting the top or bottom to one of the sides,
and all the tiles on one side of the paths must be the same color, there must always be a
losing path connecting two sides. Thus, it is impossible for both players to win Reverse Hex.
Therefore, Reverse Hex cannot end in a draw.

m



Figure 3: Sample graph G (Figure 4.3 in [PSSWO05])

3.2 Who Has the Winning Strategy in Reverse Hex?

We will now prove the Theorem 1.1. We will use the proof from [LS99] to support this
theorem.

Proof. We will first prove the second part of theorem 1.1, that the losing player has a strategy
that forces all of the cells to be filled before the other player can win. We will do this by
showing that the minimum number of cells left unfilled for a winning strategy is 0.

First, let W denote the player with a winning strategy £, and L denote the player without
a winning strategy. Also denote m (L) to be the minimum number of cells left empty by L.
Assume that m(£) > 1. We will show that this contradicts our assumption that L does not
have a winning strategy. We will need to show this in two different cases, when L is the first
player, and when L is the second player.

When L is the first player, they can apply an arbitrary first move. They will then create an
imaginary game, where the cell they just played in is still empty. Thus, the imaginary game
resembles the real game exactly, except the cell that was arbitrarily played in is considered
empty in the imaginary game, while it has L’s stone in it in the real game. L will have a
winning strategy L£" for the imaginary game because they can steal the strategy that W has
for the real game When L" requires L to play in the cell that is filled in the real game, L
instead arbitrarily fills a cell and creates a new imaginary game where that cell is considered
empty. Due to the fact that m(L£") > 1, W will always be able to play because there will
be at least two empty cells in the imaginary game, and at least one empty cell in the real
game. This also means that L will be able to play on his or her turn because there will be
at least three empty cells in the imaginary game, and at least two empty cells in the real
game. Therefore, the real game will continue as long as the imaginary game continues.

Because L is a winning strategy for L in the imaginary game, L will win the imaginary
game. Due to the monotonicity property of this game as explained in Definition 2.5, L will
also have won the real game, thus contradicting our assumption that W had the winning
strategy and L did not.



We will now look at the scenario where L is the second player. In this case, W plays the
first move. L then creates an imaginary game where the cell that W played in is considered
empty, and employs the winning strategy L£” for the imaginary game. Similar to the first
case, whenever L" requires L to play in the cell that is filled in the real game, L instead
plays in an arbitrary cell, and creates a new imaginary game where that cell is considered
empty. From here on out, it is the same as the first case. Because m(L") > 1, the real game
will continue as long as the imaginary game continues, and because £" is a winning strategy
for the imaginary game, L. will win the imaginary game. Again, due to the monotonicity
property of Reverse Hex, L will win the real game, contradicting our assumption that W
had a winning strategy and L did not.

Thus, we have proven that m(£) = 0. From this, we can determine the winner simply
by the dimensions of the board due to the fact that whoever makes the last move must be
the loser and that there cannot be a draw. Therefore, it follows that on a board with even
dimensions, and thus an even number of cells, player 1 has the winning strategy because
in optimal play, player 2 will be forced to make the last move. Similarly, on a board with
odd dimensions, player 2 has the winning strategy because in optimal play, player 1 will be

forced to make the last move.
]

While this proof is sufficient to prove Theorem 1.1, it has been further strengthened
in [HTH12] by utilizing results about variations of Reverse Hex called punctured Rex and
terminated punctured Rex. However, for the sake of brevity and simplicity, these proofs
were left out.

4 QOther Variants of Hex

Lastly, we will end with a discussion of other variants of Hex, and how different properties
of Hex (including the Hex theorem) can extend or relate to these different variants.

4.1 Vex

Vex, like Reverse Hex, is a variation of Hex where the objective of the game is modified.

Definition 4.1. (From [PSSWO05]) Vez is played very similarly to Hex, except the first
player starts in one of the obtuse corners and wins if they create a path connecting his or
her starting piece to one of the two opposite sides. The second player wins if they prevent
the first player from completing a path.

Vex, like Hex, cannot end in a draw. This follows naturally from the objectives of the
game (if one player loses, it implies the other player won, and vice versa). It can also be
shown that like Hex, the first player has a winning strategy in Vex. This follows from Piet
Hein’s observation that both players cannot be blocked locally ([PSSWO05]).



Figure 4: Hex as a special case of Y (From [Bog])

4.2 Y

Another variation of the game of Hex is simply referred to as Y. Unlike Reverse Hex and
Vex, Y not only changes the objective of the game, but also the board that the game is
played on.

Definition 4.2. From [PSSWO05]) Y is played using the same rules as Hex except it is played
on a triangular board, and the goal of each player is to create a single path that connects
all three sides.

While there is currently a proof showing that Y, like Hex, cannot end in a draw, this
proof is considered to be flawed. However, Jack van Rijswijck, the author of the proof, has
recently refined the proof in his PH.D. thesis. This corrected proof is currently pending
publication ([Bog]).

One interesting fact about Y is that Hex is actually a special case of Y where each player
has completely filled a corner of the board (as illustrated in Figure 4). Thus, to show that
Y cannot end in a draw would also prove that the game of Hex cannot end in a draw, and
thus is an alternative approach to proving the Hex theorem ([Bog]).

5 Conclusion

In this paper, we have proven that Reverse Hex cannot end in a draw. More importantly,
we have proven that the first player has the winning strategy when the board has even
dimensions, and that the second player has the winning strategy when the board has odd
dimensions. We have also shown that the player without a winning strategy has a strategy
that forces every cell to be filled before the game’s conclusion. We then concluded by briefly



touching upon other variations of the game of hex that have similar properties to the game
of Hex and Reverse Hex.

Though we have proven that there is always a winner in Reverse Hex and who has the
winning strategy in any given game of Reverse Hex, there is still much more to research.
In [HTH12], they prove what some winning moves are for player 1 on boards with even
dimensions, and what winning counter moves are for player 2 on boards with odd dimensions
in Reverse Hex. However, there may be more winning moves that have not yet been proven.
Thus, there is further room for research.

There are also numerous variations of Hex besides Reverse Hex and the ones we briefly
discussed in Section 4 that have not received as much attention. These variations not only
vary the objective of the game and the shape of the board, but also the actual method of
playing. A good, but not exclusive list of variations that could and should receive further
attention is included in [PSSWO05].
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