Friezes, triangulations, continued fractions, and binary numbers

Emily Gunawan University of Connecticut

Smith College Lunch Talk, Thursday, September 20, 2018

Slides available at https://egunawan.github.io/talks/smith18

Frieze patterns

A *frieze pattern* is an image that repeats itself along one direction. The name comes from architecture, where a frieze is a decoration running horizontally below a ceiling or roof.

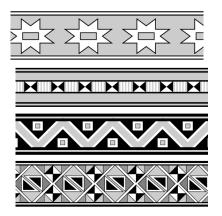


Figure: M. Ascher, Ethnomathematics, p162.

Conway-Coxeter frieze patterns

Definition

A (Conway-Coxeter) frieze pattern is an array such that:

- $1. \ \mbox{the top row is a row of } 1\mbox{s}$
- 2. every diamond

b a d c

satisfies the rule ad - bc = 1.

Example (an integer frieze)

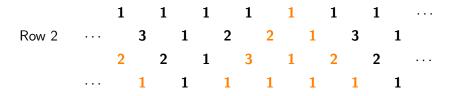
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

<th colspan="

Note: every frieze pattern is completely determined by the 2nd row.

Glide symmetry

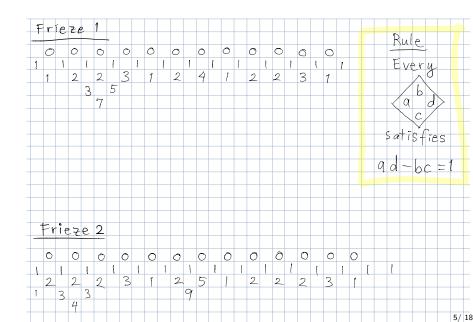
A glide symmetry is a combination of a translation and a reflection.



3 5 3 3 3

Table 1.

Practice



Practice: Answer Key

Table 1.

Table 2.

What do the numbers around each polygon count?

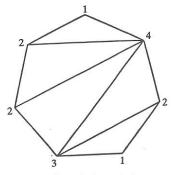
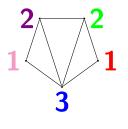


Figure 3: A triangulation of a heptagon.

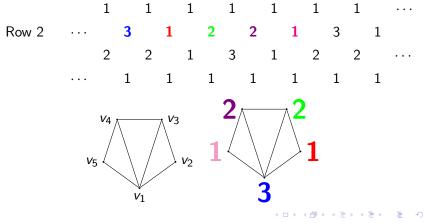


⊒ →

Conway and Coxeter (1970s)

Theorem

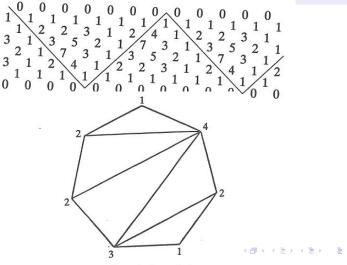
Finite frieze patterns with positive integer entries \longleftrightarrow triangulations of polygons



Conway and Coxeter (1970s)

Theorem

Finite frieze patterns with positive integer entries \longleftrightarrow triangulations of polygons



9/18

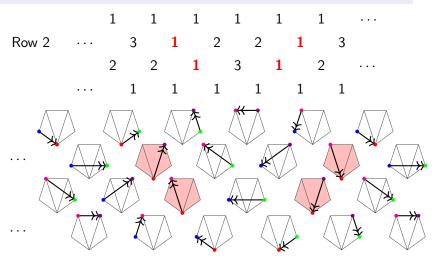
Primary school algorithm

Table 1.

Broline, Crowe, and Isaacs (BCI, 1970s)

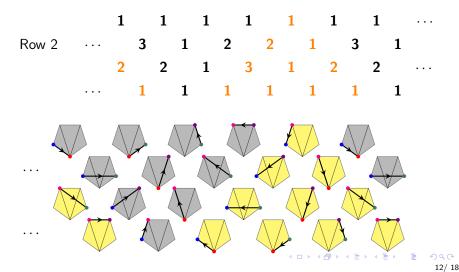
Theorem

Entries of a finite frieze pattern \longleftrightarrow edges between two vertices.



Glide symmetry (again)

A *glide symmetry* is a combination of a translation and a reflection. If we forget the arrows' orientation, the diagonals have glide symmetry.



Binary numbers

A binary number is a number expressed in the base-2 numeral system, with digits consisting of 1s and 0s. For example,

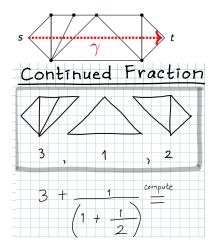
- $1 = 1 * 2^0$ (in decimal) is written as 1 (in binary).
- $2 = 1 * 2^1$ (in decimal) is written as 10 (in binary).
- $4 = 1 * 2^2$ (in decimal) is written as 100 (in binary).
- $5 = 1 * 2^2 + 1 * 2^0$ (in decimal) is written as 101 (in binary).
- ▶ $29 = 16 + 8 + 4 + 1 = 1 * 2^4 + 1 * 2^3 + 1 * 2^2 + 1 * 2^0$ is written as 11101 (in binary).

Subwords of binary numbers (G.)

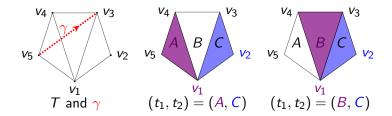
We can think of "11101" as a word in the alphabets {0, 1}. All subwords of "11101" which start with "1":

- "11101" (itself)
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"
- "11101"

Continued fractions (Çanakçı, Schiffler)



Broline, Crowe, and Isaacs (BCI, 1970s)

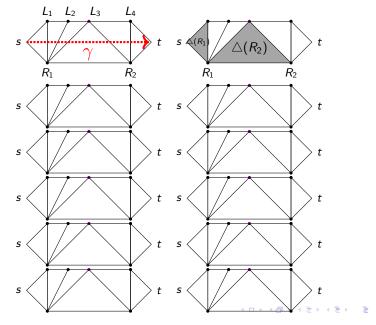


Definition (BCI tuple)

Let R_1 , R_2 , ..., R_r be the boundary vertices to the right of γ . A **BCI tuple** for γ is an *r*-tuple (t_1, \ldots, t_r) such that:

(B1) the *i*-th entry t_i is a triangle of T having R_i as a vertex. (B2) the entries are pairwise distinct.

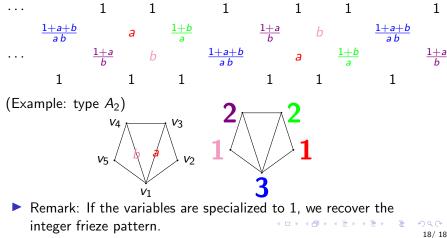
How many BCI tuples are there?



クへで 17/18

Cluster algebras (Fomin and Zelevinsky, 2000)

<u>Definition</u> A **cluster algebra** is a commutative ring with a distinguished set of generators, called **cluster variables**. <u>Theorem</u> (Caldero-Chapoton (2006): The cluster variables of a cluster algebra from a triangulated polygon (type A) form a frieze pattern.



Thank you