Frieze vectors and unitary friezes

Emily Gunawan and Ralf Schiffler University of Connecticut

I. Friezes

Let Q be a quiver and $\mathcal{A}(Q)$ the cluster algebra from Q.

- A positive integral *frieze* of type Q is a ring homomorphism $F : \mathcal{A}(Q) \to R = \mathbb{Z}$ which maps every cluster variable to a positive integer.
- A positive integral frieze is called unitary if there exists a cluster \mathbf{x} in $\mathcal{A}(Q)$ such that F maps every cluster variable in \mathbf{x} to an invertible element in R, i.e., $\mathcal{F}(x_i) = 1$ for each $x_i \in \mathbf{x}$ since 1 is the only unit in $\mathbb{Z}_{>0}$.

Proposition 1

Let \mathcal{F} be a positive unitary integral frieze. Then the cluster \mathbf{x} such that $\mathcal{F}(\mathbf{x}) = (1, \dots, 1)$ is unique. If such \mathbf{x} exists, then it is unique.

Proof: If u is a cluster variable not in a cluster \mathbf{x} , then the Laurent expansion of u in \mathbf{x} has two or more terms.

Examples

- The identity frieze $Id: \mathcal{A}(Q) \to \mathcal{A}(Q)$.
- A frieze $\mathcal{F}: \mathcal{A}(Q) \to \mathbb{Z}$ defined by fixing a cluster \mathbf{x} and sending each cluster variable in \mathbf{x} to 1.

Figure 1. The identity frieze $Id: \mathcal{A}(Q) \to \mathcal{A}(Q)$ for the type \mathbb{A}_3 quiver $Q = 1 \to 2 \leftarrow 3$.

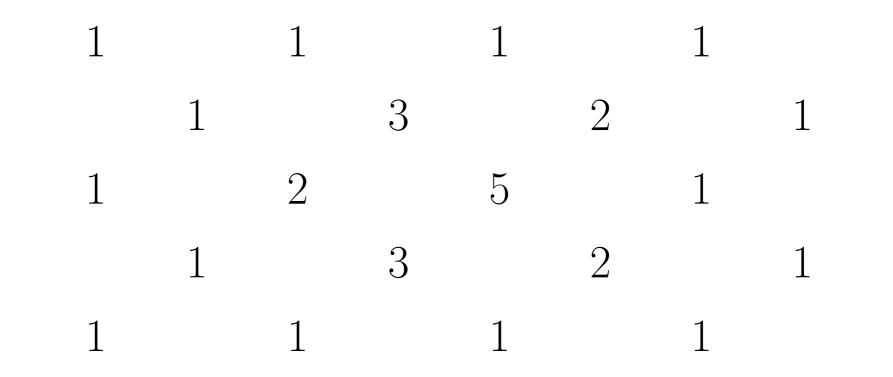


Figure 2. Setting $x_1 = x_2 = x_3 = 1$ produces a Conway – Coxeter frieze pattern.

II. Frieze Vectors

Fix a cluster $\mathbf{x} = (x_1, \ldots, x_n)$.

- A vector $(a_1, \ldots, a_n) \in \mathbb{Z}_{>0}^n$ can be used to define a frieze $\mathcal{F} : \mathcal{A}(Q) \to \mathbb{Q}$ by defining $\mathcal{F}(x_i) = a_i$ for all $i = 1, \ldots, n_i$
- We say that (a_1, \ldots, a_n) is a *positive frieze vector relative to* **x** if \mathcal{F} maps every cluster variable to a positive integer (as opposed to \mathbb{Q}).
- If (a_1, \ldots, a_n) determines a unitary frieze, we say that (a_1, \ldots, a_n) is a **unitary** frieze vector.

Theorem 2

• A vector $(a_1, a_2, a_3) \in \mathbb{Z}^3_{>0}$ is a positive frieze vector relative to



Fix $\mathcal{A}(Q)$ and fix $\mathbf{x} = (x_1, \ldots, x_n)$ an arbitrary cluster. Define $\phi : \{ \text{ unordered clusters } \} \rightarrow \{ \text{ positive unitary frieze vectors } \}$ $\mathbf{x}' = \{x'_1, \dots, x'_n\} \mapsto \phi(\mathbf{x}') = \mathcal{F}(\mathbf{x}) = (a_1, \dots, a_n)$

where and \mathcal{F} is the frieze defined by specializing the cluster variables in $\mathbf{x'}$ to 1. Then ϕ is a bijection.

Proof: Injectivity follows from Proposition 1. Surjectivity follows from the construction of ϕ .

Proposition 3

Let (\mathbf{x}, Q) be an acyclic seed. Then a vector $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ is a frieze vector relative to \mathbf{x} iff a_k divides

$$\prod_{k \to j} x_j + \prod_{k \leftarrow j} x_j$$

for all $k = 1, \ldots, n$.

the cluster $(x_1, x_2, x_3), Q = 1 \rightarrow 2 \leftarrow 3$ iff $a_2 + 1 \ a_1 a_3 + 1 \ a_2 + 1$ a_2 , a_3 a_1 ,

are integers.

• Given any type \mathbb{A}_3 quiver, there are 14 positive frieze vectors. The values of these vectors depend on the quiver.

Figure 3. Positive Frieze vectors relative to $Q = 1 \rightarrow 2 \leftarrow 3$.

Lemma 4

Let \mathcal{F} be a positive frieze of type $\widetilde{\mathbb{A}}_{p,q}$. Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a cluster such that $\mathcal{F}(x) = 1$ for each regular (i.e. peripheral) cluster variable. Let kbe such that $\mathcal{F}(x_k) \geq \mathcal{F}(x_j)$ for all j, and suppose that $\mathcal{F}(x_k) > 1$. Then $\mathcal{F}(\mu_k(x_k)) < \mathcal{F}(x_k)$ and if $\mu_k(x_k)$ a regular cluster variable then $\mathcal{F}(\mu_k(x_k)) = 1$.

Theorem 5

All type $\mathbb{A}_{p,q}$ friezes are unitary.

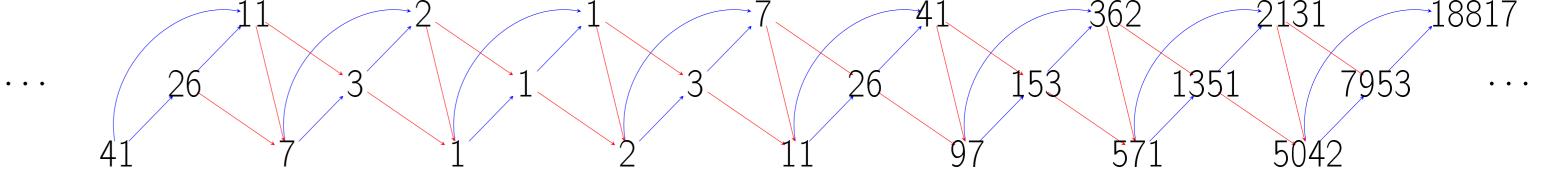


Figure 4. An $\widetilde{\mathbb{A}}_{1,2}$ frieze obtained by specializing the cluster variables of an acyclic seed to 1. The peripheral arcs have frieze values 2 and 3.

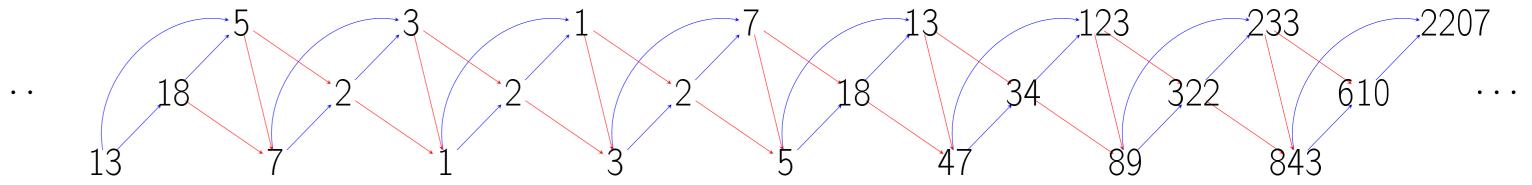


Figure 5. An $A_{1,2}$ frieze obtained by specializing the cluster variables of a non-acyclic seed to 1. The peripheral arcs have frieze values 1 and 5.

Remark: All positive integral friezes of type A and A are unitary, but there are non-unitary positive integral friezes of type \mathbb{D} , \mathbb{D} , \mathbb{E} , and \mathbb{E} .

https://egunawan.github.io

