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I. Friezes

Let Q be a quiver and A(Q) the cluster algebra from Q.

A positive integral frieze of type Q is a ring homomorphism F : A(Q)→ R = Z which maps every cluster variable to a positive integer.

A positive integral frieze is called unitary if there exists a cluster x in A(Q) such that F maps every cluster variable in x to an invertible element in R,
i.e., F(xi) = 1 for each xi ∈ x since 1 is the only unit in Z>0.

Proposition 1

Let F be a positive unitary integral frieze. Then the cluster x such that
F(x) = (1, . . . , 1) is unique. If such x exists, then it is unique.

Proof: If u is a cluster variable not in a cluster x, then the Laurent expan-
sion of u in x has two or more terms.

Examples

The identity frieze Id : A(Q)→ A(Q).
A frieze F : A(Q)→ Z de�ned by �xing a cluster x and sending each
cluster variable in x to 1.
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Figure 1. The identity frieze Id : A(Q)→ A(Q) for the type A3 quiver Q = 1→ 2← 3.
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Figure 2. Setting x1=x2=x3=1 produces a Conway � Coxeter frieze pattern.

II. Frieze Vectors

Fix a cluster x = (x1, . . . , xn).

A vector (a1, . . . , an) ∈ Zn>0 can be used to de�ne a frieze F : A(Q)→ Q by de�ning F(xi) = ai for all i = 1, . . . , n.

We say that (a1, . . . , an) is a positive frieze vector relative to x if F maps every cluster variable to a positive integer (as opposed to Q).

If (a1, . . . , an) determines a unitary frieze, we say that (a1, . . . , an) is a unitary frieze vector.

Theorem 2

Fix A(Q) and �x x = (x1, . . . , xn) an arbitrary cluster. De�ne

φ : { unordered clusters } → { positive unitary frieze vectors }
x′ = {x′1, . . . , x′n} 7→ φ(x′) = F(x) = (a1, . . . , an)

where and F is the frieze de�ned by specializing the cluster variables
in x′ to 1. Then φ is a bijection.

Proof: Injectivity follows from Proposition 1. Surjectivity follows
from the construction of φ.

Proposition 3

Let (x, Q) be an acyclic seed. Then a vector (a1, . . . , an) ∈ Zn is
a frieze vector relative to x i� ak divides∏

k→j

xj +
∏
k←j

xj

for all k = 1, . . . , n.

A vector (a1, a2, a3) ∈ Z3
>0 is a

positive frieze vector relative to
the cluster

(x1, x2, x3), Q = 1→ 2← 3

i�
a2 + 1

a1
,
a1a3 + 1

a2
,
a2 + 1

a3
are integers.

Given any type A3 quiver, there
are 14 positive frieze vectors.
The values of these vectors
depend on the quiver.
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Figure 3. Positive Frieze vectors relative to Q = 1→ 2← 3.

III. Type Ã friezes

Lemma 4

Let F be a positive frieze of type Ãp,q. Let x = (x1, . . . , xn) be a cluster
such that F(x) = 1 for each regular (i.e. peripheral) cluster variable. Let k
be such that F(xk) ≥ F(xj) for all j, and suppose that F(xk) > 1. Then
F(µk(xk)) < F(xk) and if µk(xk) a regular cluster variable then F(µk(xk)) = 1.

Theorem 5

All type Ãp,q friezes are unitary.
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Figure 4. An Ã1,2 frieze obtained by specializing the cluster variables of an acyclic seed to 1. The peripheral

arcs have frieze values 2 and 3.
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Figure 5. An Ã1,2 frieze obtained by specializing the cluster variables of a non-acyclic seed to 1. The
peripheral arcs have frieze values 1 and 5.

Remark: All positive integral friezes of type A and Ã are unitary, but there are non-unitary positive integral friezes of type D, D̃, E, and Ẽ.
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