Box-Ball Systems and Robinson–Schensted–Knuth Tableaux

University of Oklahoma ARTS Seminar

Friday, April 23, 2021

UConn Math REU 2020 Ben Drucker, Eli Garcia, Aubrey Rumbolt, and Rose Silver

Motivation: Soliton waves

- ► At time -∞, soliton waves are traveling through space at different speeds, not minding each other.
- At some time, they begin to collide with one another, causing interference, and for a while you have a mess.
- But eventually by time $+\infty$ the interference sorts itself out, and the solitons continue on their way as if it hadn't happened.

t

Start with an initial configuration $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_k$, where π is a permutation.

Step 1: Write the permutation on a strip of infinite boxes:

$$t = 0$$
 4 5 2 3 6 1 ...

Step 2: To complete a box-ball move, let each number (or "ball") jump to the next available spot (or "box") to the right. First move 1, then move 2, and so on.

Step 3: Continue moving numbers from smallest to largest to their nearest available spots until every number in the permutation has been moved.

We are now at the t = 1 state and we have completed one BBS move.

Step 4:

Continue making BBS moves.

(Here, 4 moves are shown).

Box-Ball System: Soliton Decomposition

After a finite number of moves, the system reaches a *steady state* where:

- blocks of increasing sequences (or *solitons*) move together at a speed equal to their length.
- ▶ the sizes of the solitons are weakly increasing from left to right
- ▶ order of the solitons remain unchanged

Step 5: After reaching steady state, create a soliton decomposition diagram $SD(\pi)$ by stacking solitons from right to left.

The shape of the diagram always forms a partition (weakly decreasing sequence of positive integers):

Soliton decomposition
$$SD(\pi) = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 5 \\ 4 \end{bmatrix}$$
 with shape $(3, 2, 1)$.

REU Questions.

When does a permutation reach its steady state? How many permutations in S_n first reach its steady state at a given time t?

Tableaux

Definition. (Young Tableaux)

- ▶ A *tableau* is an arrangement of numbers $\{1, 2, ..., n\}$ into rows whose lengths are weakly decreasing.
- ▶ A tableau is *standard* if the rows and columns are increasing sequences.
- ▶ The *reading word* of a standard Young tableau is the permutation formed by concatenating the rows of the tableau from bottom to top.

Example. (Standard Young Tableau)

- $\frac{12}{34}$ is a standard tableau. Its reading word is 53412.
- $\blacktriangleright \frac{\frac{1}{2}}{\frac{5}{2}}$ is a nonstandard tableau.

REU Question.

When is a soliton decomposition standard?

Robinson-Schensted insertion algorithm

The Robinson-Schensted (RS) insertion algorithm is a bijection from permutations π to pairs of standard tableaux $(P(\pi), Q(\pi))$ called the insertion tableau and the recording tableau of π . Example: $\pi = 452361$

$$P(\pi) = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 5 \\ 4 \end{bmatrix}, \quad Q(\pi) = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \\ 6 \end{bmatrix}$$

Fact: Let r be the reading word of a standard tableau T. Then $P(\pi) = T$.

P-tableau vs soliton decomposition

REU Question.

For what permutations π do we have $P(\pi) = SD(\pi)$?

Lemma

- A permutation r is the reading word of a standard tableau T if and only if it reaches its soliton decomposition at t = 0.
- ▶ In particular, if r is the reading word of T, then $P(r) = T = SD(\pi)$.

Theorem

The following are equivalent:

- 1. $SD(\pi) = P(\pi)$.
- 2. $SD(\pi)$ is a standard tableau.
- 3. $\operatorname{sh} \operatorname{SD}(\pi) = \operatorname{sh} \operatorname{P}(\pi)$.

Knuth Relations

Definition Suppose π , $w \in S_n$ and x < y < z. \triangleright π and w differ by a Knuth relation of the **first kind** (K₁) if $\pi = x_1 \dots y x_2 \dots x_n$ and $w = x_1 \dots y z x \dots x_n$ \triangleright π and w differ by a Knuth relation of the second kind (K₂) if $\pi = x_1 \dots x_2 \dots x_n$ and $w = x_1 \dots x_n \dots x_n$ $\blacktriangleright \pi$ and w differ by Knuth relations of **both kinds** (K_B) if $\pi = x_1 \dots y_1 x_2 y_2 \dots x_n$ and $w = x_1 \dots y_1 z_1 x_2 y_2 \dots x_n$ for $x < y_1, y_2 < z$

Example $326154 \sim^{K_1} 362154$ $362154 \sim^{K_B} 362514$

Facts (Knuth)

- ▶ There is a path of Knuth moves from π to the reading word of $P(\pi)$.
- Two permutations have the same RS insertion tableau if and only if they are related by a sequence of Knuth moves.

Example

The Knuth equivalence class of r = 362514, the reading word of the tableau

The soliton decomposition is preserved by non- K_B Knuth moves, but one K_B move changes the soliton decomposition.

Theorems

Let r denote the reading word of $P(\pi)$.

- ▶ If there exists a path of *non-K_B* Knuth moves from π to r, then $SD(\pi) = P(\pi)$.
- If there exists a path from π to r containing an *odd* number of K_B moves, then $SD(\pi) \neq P(\pi)$.

Soliton decompositions in a Knuth equivalence class

The permutation r = 362514 is the reading word of the tableau

1	4
2	5
3	6

Q-tableau and steady-state value

Theorem

If $n \geq 5$ and a permutation w in S_5 has recording tableau

then w first reaches a steady-state configuration at time n-3. The time when w first reaches steady state is called the *steady-state value* of w. Conjecture

- 1. All other permutations in S_n have steady-state value less than n-3; i.e., the set of permutations with steady-state value n-3 are counted by standard Young tableaux of shape (n-3,2,1).
- 2. If two permutations have the same recording tableau, they have the same steady-state value.

Thank You!