Box-Ball Systems and Robinson-Schensted-Knuth Tableaux

University of Oklahoma ARTS Seminar
Friday, April 23, 2021

UConn Math REU 2020
Ben Drucker, Eli Garcia, Aubrey Rumbolt, and Rose Silver

Motivation: Soliton waves

- At time $-\infty$, soliton waves are traveling through space at different speeds, not minding each other.
- At some time, they begin to collide with one another, causing interference, and for a while you have a mess.
- But eventually by time $+\infty$ the interference sorts itself out, and the solitons continue on their way as if it hadn't happened.

Box-Ball System: Example- $\pi=452361$

Start with an initial configuration $\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{k}$, where π is a permutation.
Step 1: Write the permutation on a strip of infinite boxes:
$t=0$

4	5	2	3	6	1						

Step 2: To complete a box-ball move, let each number (or "ball") jump to the next available spot (or "box") to the right. First move 1, then move 2, and so on.

$$
t=0
$$

4	5	2	3	6	1						

4	5	2	3	6		1					

Box-Ball System: Example $-\pi=452361$

Step 3: Continue moving numbers from smallest to largest to their nearest available spots until every number in the permutation has been moved.

We are now at the $t=1$ state and we have completed one BBS move.

Box-Ball System: Example- $\pi=452361$

Step 4: Continue making BBS moves.
(Here, 4 moves are shown).

Box-Ball System: Soliton Decomposition

After a finite number of moves, the system reaches a steady state where:

- blocks of increasing sequences (or solitons) move together at a speed equal to their length.
- the sizes of the solitons are weakly increasing from left to right
- order of the solitons remain unchanged

Box-Ball System: Example- $\pi=452361$

Step 5: After reaching steady state, create a soliton decomposition diagram $\mathrm{SD}(\pi)$ by stacking solitons from right to left.

$$
t=4 \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & 4 & & 2 & 5 & & & & & 1 & 3 & 6 & \\
\hline
\end{array}
$$

The shape of the diagram always forms a partition (weakly decreasing sequence of positive integers):

$$
\text { Soliton decomposition } \operatorname{SD}(\pi)=\begin{array}{|l|l|l}
\hline & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & &
\end{array} \text { with shape }(3,2,1) \text {. }
$$

REU Questions.

When does a permutation reach its steady state?
How many permutations in S_{n} first reach its steady state at a given time t ?

Tableaux

Definition. (Young Tableaux)

- A tableau is an arrangement of numbers $\{1,2, \ldots, n\}$ into rows whose lengths are weakly decreasing.
- A tableau is standard if the rows and columns are increasing sequences.
- The reading word of a standard Young tableau is the permutation formed by concatenating the rows of the tableau from bottom to top.

Example. (Standard Young Tableau)

$-\frac{{ }_{\frac{1}{3}}^{5}}{\frac{1}{5}}$ is a standard tableau. Its reading word is 53412 .
$-\frac{x^{1}}{\frac{4}{\frac{5}{5}}} \begin{aligned} & \frac{2}{3}\end{aligned}$ is a nonstandard tableau.

REU Question.

When is a soliton decomposition standard?

Robinson-Schensted insertion algorithm

The Robinson-Schensted ($R S$) insertion algorithm is a bijection from permutations π to pairs of standard tableaux $(P(\pi), Q(\pi))$ called the insertion tableau and the recording tableau of π.
Example: $\pi=452361$

$$
P(\pi)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & &
\end{array}, Q(\pi)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline 6 & & \\
\hline
\end{array}
$$

Fact: Let r be the reading word of a standard tableau T. Then $P(\pi)=T$.

P-tableau vs soliton decomposition

REU Question.

For what permutations π do we have $P(\pi)=S D(\pi)$?

Lemma

- A permutation r is the reading word of a standard tableau T if and only if it reaches its soliton decomposition at $t=0$.
- In particular, if r is the reading word of T, then $P(r)=T=S D(\pi)$.

Theorem

The following are equivalent:

1. $\mathrm{SD}(\pi)=\mathrm{P}(\pi)$.
2. $\mathrm{SD}(\pi)$ is a standard tableau.
3. $\operatorname{sh} \mathrm{SD}(\pi)=\operatorname{sh} \mathrm{P}(\pi)$.

Knuth Relations

Definition

Suppose $\pi, w \in S_{n}$ and $x<y<z$.

- π and w differ by a Knuth relation of the first kind $\left(K_{1}\right)$ if

$$
\pi=x_{1} \ldots y x z \ldots x_{n} \text { and } w=x_{1} \ldots y z x \ldots x_{n}
$$

- π and w differ by a Knuth relation of the second kind $\left(K_{2}\right)$ if

$$
\pi=x_{1} \ldots x z y \ldots x_{n} \text { and } w=x_{1} \ldots z x y \ldots x_{n}
$$

- π and w differ by Knuth relations of both kinds $\left(K_{B}\right)$ if

$$
\pi=x_{1} \ldots y_{1} x z y_{2} \ldots x_{n} \text { and } w=x_{1} \ldots y_{1} z x y_{2} \ldots x_{n}
$$

for $x<y_{1}, y_{2}<z$

Example
$326154 \sim^{K_{1}} 362154$
$362154 \sim^{K_{B}} 362514$

Facts (Knuth)

- There is a path of Knuth moves from π to the reading word of $P(\pi)$.
- Two permutations have the same RS insertion tableau if and only if they are related by a sequence of Knuth moves.

Example

The Knuth equivalence class of $r=362514$, the reading word of the tableau

Soliton decompositions and Knuth moves

The soliton decomposition is preserved by non- K_{B} Knuth moves, but one K_{B} move changes the soliton decomposition.

Theorems

Let r denote the reading word of $P(\pi)$.

- If there exists a path of non- K_{B} Knuth moves from π to r, then $\operatorname{SD}(\pi)=P(\pi)$.
- If there exists a path from π to r containing an odd number of K_{B} moves, then $\mathrm{SD}(\pi) \neq P(\pi)$.

Soliton decompositions in a Knuth equivalence class

The permutation $r=362514$ is the reading word of the tableau

Q-tableau and steady-state value

Theorem

If $n \geq 5$ and a permutation w in S_{5} has recording tableau

then w first reaches a steady-state configuration at time $n-3$.
The time when w first reaches steady state is called the steady-state value of w.

Conjecture

1. All other permutations in S_{n} have steady-state value less than $n-3$; i.e., the set of permutations with steady-state value $n-3$ are counted by standard Young tableaux of shape ($n-3,2,1$).
2. If two permutations have the same recording tableau, they have the same steady-state value.

Thank You!

