Conway – Coxeter friezes, cluster algebras, and SageMath

Emily Gunawan University of Connecticut

Sage Days 95: Women In Sage Saint-Faustin-Lac-Carré, Québec Thursday, July 12, 2018

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Outline

- 1. Conway Coxeter friezes
 - A Conway Coxeter frieze is a Catalan object
 - Connection to classical objects like continued fractions and binary words
 - Connection to quiver representations and cluster algebras
 - Using SageMath to draw friezes using LaTeX
- 2. Cluster algebras
 - Commutative algebras with a lot of combinatorial structure
 - Using SageMath to do cluster algebra computation

・ロ・・雪・・雪・・雪・ うらぐ

Frieze

A *frieze* is an image that repeats itself along one direction. The name comes from architecture, where a frieze is a decoration running horizontally below a ceiling or roof.

Figure: M. Ascher, Ethnomathematics, p162.

(ロ) (同) (E) (E) (E)

Conway-Coxeter frieze

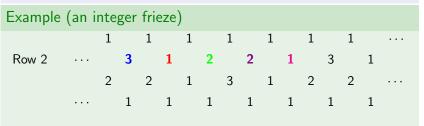
Definition

A (type A) frieze is an array such that:

- $1. \ \mbox{it}$ is bounded above and below by a row of 1s
- 2. every diamond

satisfies the diamond rule ad - bc = 1.

A Conway-Coxeter frieze consists of only positive integers.



Glide symmetry

A glide symmetry is a combination of a translation and a reflection.

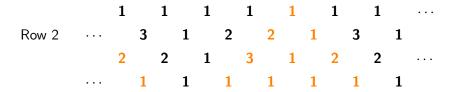


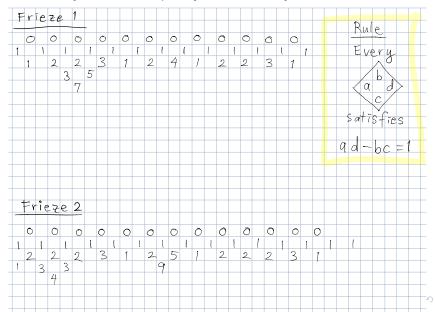
Table 1.

э

Э

Children practicing arithmetic

Note: every frieze is completely determined by the 2nd row.



Children practicing arithmetic: Answer Key

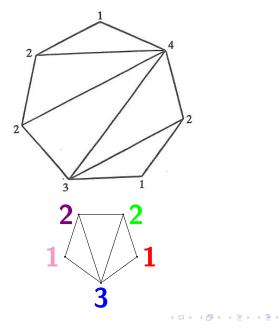
3 3 0 Table 1. 1 0 0

Table 2.

Э

Frieze Sage demo

What do the numbers around each polygon count?



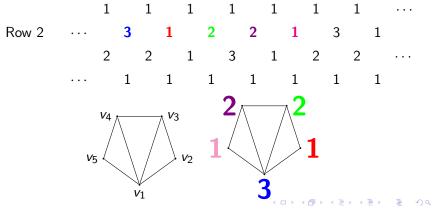
Э

Conway and Coxeter (1970s)

Theorem

A Conway – Coxeter frieze with n nontrivial rows \longleftrightarrow a triangulation of an (n + 3)-gon

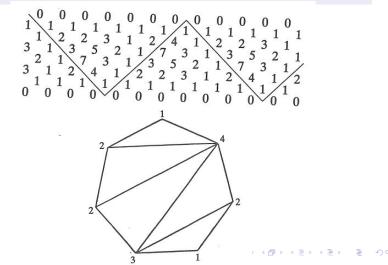
Note: Hence Conway - Coxeter friezes are Catalan objects.



Conway and Coxeter (1970s)

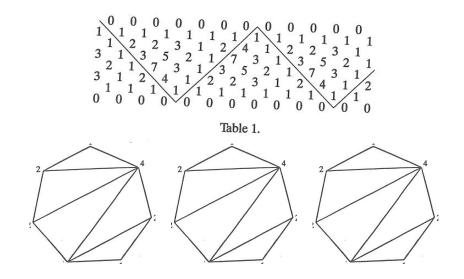
Theorem

A Conway – Coxeter frieze with n nontrivial rows \longleftrightarrow a triangulation of an (n + 3)-gon



11

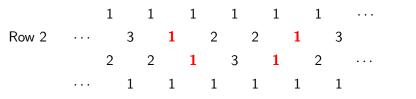
Primary school algorithm

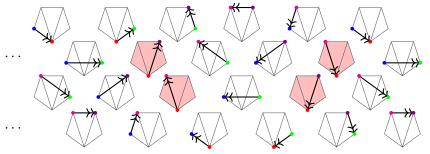


Broline, Crowe, and Isaacs (BCI, 1970s)

Theorem

Entries of a frieze \longleftrightarrow edges between two vertices.

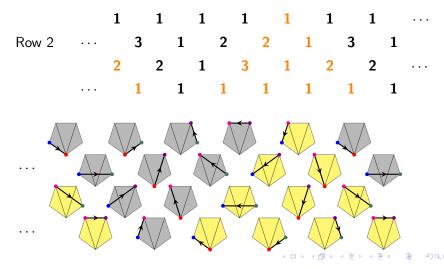




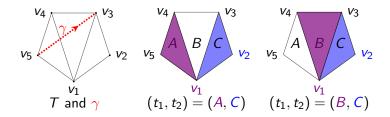
・ロト ・回ト ・ヨト

Glide symmetry (again)

Recall: A *glide symmetry* is a combination of a translation and a reflection. If we forget the arrows' orientation, the diagonals have glide symmetry.



Broline, Crowe, and Isaacs (BCI, 1970s)



Definition (BCI tuple)

Let R_1 , R_2 , ..., R_r be the boundary vertices to the right of γ . A **BCI tuple** for γ is an *r*-tuple (t_1, \ldots, t_r) such that:

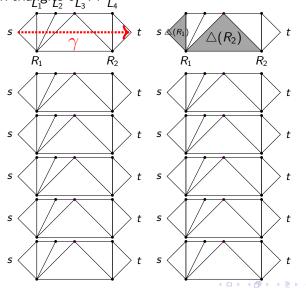
(B1) the *i*-th entry t_i is a triangle of T having R_i as a vertex. (B2) the entries are pairwise distinct.

- 3

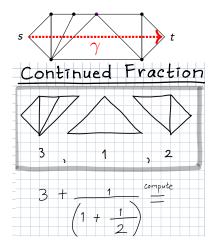
イロン イヨン イヨン イヨン

How many BCI tuples are there?

Example: A triangulation T of an octagon and a diagonal γ which crosses six triangles of T. $_{L_4}$



Continued fractions (Çanakçı, Schiffler)



Binary number representations

A **binary number representation** is an expression of a nonzero integer in the base-2 numeral system, with digits consisting of 1s and 0s. For example,

- $1 = 1 * 2^0$ (in decimal) is written as 1 (in binary).
- $2 = 1 * 2^1$ (in decimal) is written as 10 (in binary).
- $4 = 1 * 2^2$ (in decimal) is written as 100 (in binary).
- ▶ $5 = 1 * 2^2 + 1 * 2^0$ (in decimal) is written as 101 (in binary).
- ▶ 29 = 16 + 8 + 4 + 1 = 1 * 2⁴ + 1 * 2³ + 1 * 2² + 1 * 2⁰ is written as 11101 (in binary).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Subwords of binary numbers

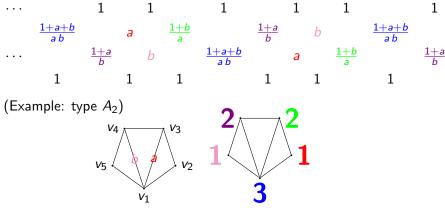
We can think of "11101" as a word in the alphabets $\{0,1\}$. The following are all the (scattered, non-consecutive) subwords of "11101" which start with "1":

- 11101 (empty)
- ▶ <u>1</u>1101: <u>1</u>
- ▶ <u>1</u>11<u>0</u>1: <u>10</u>
- ▶ <u>11</u>101: <u>11</u>
- ▶ <u>1</u>11<u>01</u>: <u>101</u>
- ▶ <u>11</u>1<u>0</u>1: <u>110</u>
- ▶ <u>111</u>01: <u>111</u>
- ▶ <u>11</u>1<u>01</u>: <u>1101</u>
- ▶ <u>1110</u>1: <u>1110</u>
- ▶ <u>111</u>0<u>1</u>: <u>1111</u>
- <u>11101</u>: <u>11101</u> (the word itself)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Cluster algebras (Fomin and Zelevinsky, 2000)

A **cluster algebra** is a commutative ring generated by sets called **clusters**. Each element of a cluster is called **cluster variables**. <u>Theorem</u> (Caldero – Chapoton, 2006): The cluster variables of a cluster algebra from a triangulated polygon (type *A*) form a frieze.



► Remark: If the variables are specialized to 1, we recover the Conway

- Coxeter positive integer frieze.

・ロト ・日本 ・モート ・モート

Example: a type A_3 frieze

1		1		1		1	
	<i>x</i> 3		$\frac{x_1x_3+1+x_2}{x_2x_3}$		$\frac{x_2+1}{x_1}$		<i>x</i> 1
<i>x</i> ₂		$\frac{x_1x_3+1}{x_2}$		$\frac{x_2^2 + 2x_2 + 1 + x_1x_3}{x_1x_2x_3}$		<i>x</i> ₂	
	<i>x</i> ₁		$\frac{x_1x_3+1+x_2}{x_1x_2}$		$\frac{x_2+1}{x_3}$		<i>x</i> 3
1		1		1		1	

Frieze over the positive integers

Specializing $x_1 = x_2 = x_3 = 1$ gives a Conway – Coxeter positive integer frieze

◆□> ◆□> ◆三> ◆三> ● 三 のへの

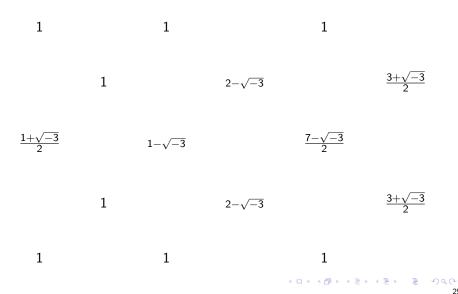
Frieze over the integers

Specializing $x_1 = x_2 = 1$ and $x_3 = -1$ gives

Frieze over the Gaussian integers $\mathbb{Z}[i]$

Specializing $x_1 = 1$, $x_2 = i$, and $x_3 = i$ gives

Frieze over the quadratic integer ring $\mathbb{Z}[\sqrt{-3}]$ Specializing $x_1 = 1$, $x_2 = \frac{1+\sqrt{-3}}{2}$, $x_3 = 1$ gives



25

Cluster algebra Sage demo

Website references:

1. Wikipedia entry

https://en.wikipedia.org/wiki/Cluster_algebra

2. Cluster Algebras Portal http://www.math.lsa.umich.edu/~fomin/cluster.html

arXiv.org references:

- Introductory cluster algebra survey by Lauren Williams titled Cluster algebras: an introduction https://arxiv.org/abs/1212.6263
- Cluster algebra textbook by Sergey Fomin, Lauren Williams, Andrei Zelevinsky titled Introduction to cluster algebras https://arxiv.org/abs/1608.05735
- 3. Frieze survey by Sophie Morier-Genoud titled **Coxeter's frieze** patterns at the crossroads of algebra, geometry and combinatorics https://arxiv.org/abs/1503.05049
- Frieze paper by Emily Gunawan and Ralf Schiffler titled Frieze vectors and unitary friezes https://arxiv.org/abs/1806.00940

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank you