Type A and B c-Birkhoff polytopes

Emily Gunawan (UMass Lowell)

Jt. w/

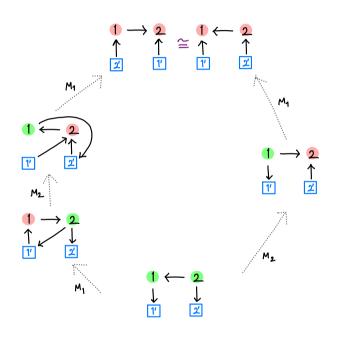
Esther Banaian, Sunita Chepuri, & Jianping Pan

35th Meeting on the Representation Theory of Algebras & Related Topics in honour of Thomas Brüstle's 60th birthday

Sat, 25 Oct 2025

### ON MAXIMAL GREEN SEQUENCES

T. BRÜSTLE, G. DUPONT AND M. PÉROTIN

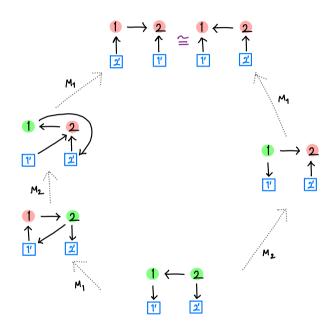


The oriented exchange graph  $\overrightarrow{EG}(Q)$  of  $Q=1\leftarrow 2$ 

The maximal chains of  $\overrightarrow{EG}(Q)$   $\longleftrightarrow$ maximal green sequences of Q

#### ON MAXIMAL GREEN SEQUENCES

T. BRÜSTLE, G. DUPONT AND M. PÉROTIN

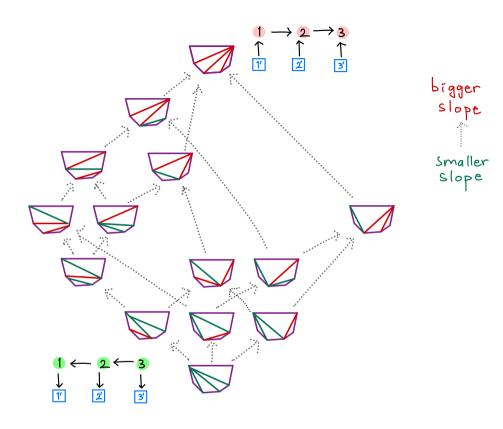


The oriented exchange graph  $\overrightarrow{EG}(Q)$  of  $Q = 1 \leftarrow 2$ 

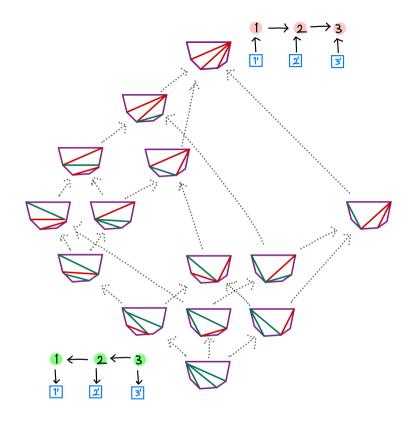
The maximal chains of  $\overline{EG}(Q)$   $\longleftrightarrow$ maximal green sequences of Q

Question:

How many maximal green sequences of  $Q = 1 \leftarrow 2$  are there?



The oriented exchange graph of  $Q = 1 \leftarrow 2 \leftarrow 3$ 



slope Smaller Slope

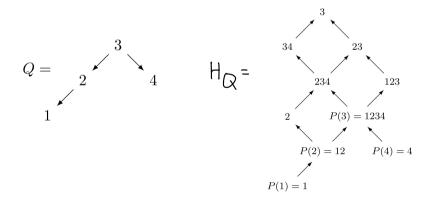
## Question:

How many maximal green sequences of  $Q = 1 \leftarrow 2 \leftarrow 3$  are there?

The oriented exchange graph of  $Q = 1 \leftarrow 2 \leftarrow 3$ 

Main Idea For each type A quiver Q, define a Birkhoff subpolytope Birk (Q) whose volume counts longest maximal green sequences of Q.

Note: # of longest maximal green sequences of Q  $= \# \text{ of linear extensions of a poset } H_Q \text{ whose Hasse diagram is}$ the Auslander-Reiten quiver of  $\operatorname{rep} Q$ 



Volume of Birk(Q) = 41

# of linear extensions of HQ = 41

Volume of Birk(Q) for  $Q = 1 \leftarrow 2 \leftarrow 3 \dots \leftarrow n$ 

|        | n=2 | n=3   | n= 4        | n=5 5       | n=6 5k6 |     |
|--------|-----|-------|-------------|-------------|---------|-----|
| Q      | 1 2 | 1 4 3 | 1 K 2 K 3 K | 1 K 2 K 3 K | 1626    |     |
| HQ     |     |       |             |             |         | ••• |
| Volume | 1   | 2     | 12          | 286         | 33592   |     |

n=0123456 OEIS A003121 (1,1,1,2,12,286,33592,...) Counts: (Fishel-Nelson 12) a. longest chains (length  $\binom{n+1}{2}$ ) in the Tamari lattice, i.e. the oriented exchange graph of  $Q = 1 \leftarrow 2 \leftarrow 3 \dots \leftarrow n$ b. Normalized volume of Conv (perm. matrices of 312, 132 - avoiding permutations) (Davis - Sagan 16) C. Linear extensions of the poset H whose Hasse diagram is the Auslander-Reiten guiver of rep (EC...E) (OEIS 3rd comment '03) ex N=4

d. Normalized volume of the order polytope O(H)

I. Setup

W = An the symmetric group  $S_{n+1}$   $S_1 = (12),$   $generated by <math>S_1, ..., S_n$   $S_k = (k k+1)$  Cycle notation  $S_3$   $S_4 = (45)$ 

C a Coxeter elt of W,

i.e. product of all n simple

transpositions, in any order

[1-1]

Q an orientation of 1 2 n

Rule: k k+1 if Sk is left of Sk+1 "lower-barred"

K k+1

Other is "upper-"

K K+1 otherwise "upperk+1 barred"  $S_4 = (45)$ reduced word  $C = S_1 S_4 S_2 S_3$  = (12354)

 $Q = Quiver(c) = \frac{S_3}{S_2 L_3} \frac{4}{S_4}$   $S_1 L_2$ 

Heaps theory (Viennot '86, Stembridge '96, Stanley's EC Vol 1, ...)

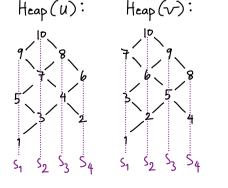
Given a reduced word  $u = Su_1 Su_2 ... Su_k$  of  $w \in A_n$ , the heap of u, Heap (u), is the partial order d on  $\{1, 2, ..., l\}$  given by the transitive closure of the relations

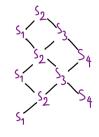
for x < y such that  $|u_x - u_y| \le 1$ .

For each poset element  $x \in \{1, 2, ...\}$  the label of  $x \in \{1, 2, ...\}$ 

For each poset element  $x \in \{1,2,...,L\}$ , the label of x is  $S_{u_x}$ 

Ex: U= 51 54 52 53 51 54 52 53 51 52, V= S1 52 51 54 53 52 51 54 53 52





Heap (U) and Heap (V) have the same heap diagram:

\* In general, if H is the heap of a reduced word a...a.

then an ... at is a linear extension of H, and

A total order TT that is consistent by the structure of H, i.e.

 $x \underset{H}{\checkmark} y$  implies  $\pi(x) < \pi(y)$ 

{ Linear extensions of H} = commutation class of ai... ae (all words that can be obtained

from a, ... at by a sequence of

commutation moves sisi to sisi for li-j1 >2)

inear extensions of )

$$\begin{cases} S_{2} S_{1} S_{2} S_{3} S_{2} S_{4} S_{3} \\ S_{3} S_{4} S_{5} \end{cases}$$

\* Def (N. Reading '07)

 $\cdot c^{\infty} := c | c | c | \cdots$ 

Ex: If  $C = S_1 S_4 S_2 S_3$  then  $C^{\infty} = S_1 S_4 S_2 S_3 | S_1 S_4 S_2 S_3 | S_1 S_4 S_2 S_3 | ...$ 

The c-sorting word of w is the lexicographically first subword of co (as a sequence of positions in  $c^{\infty}$ ) that is a reduced word for w

Notation: sort, (w)

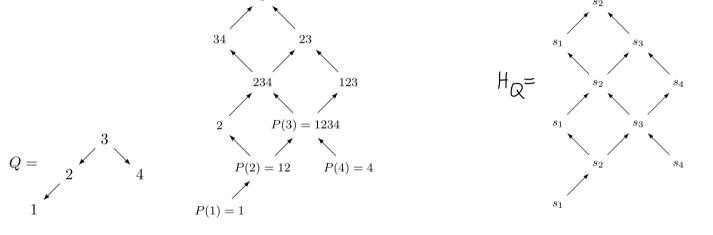
\* Let Wo denote the longest permutation, (nt1)... 321 in 1-line notation Then  $l(w_0) = {n+1 \choose 2}$  loxeter length

Ex: Wo = 54321

$$L(\omega_0) = \binom{5}{2} = 10$$

Def Let Ha be the following diagram:

Step 1 Draw the Auslander-Reiten Step 2 Replace indecomposables in the quiver of rep Q vertically T1-orbit of P(j) with label Sj



 $\omega_0 = 54321$   $l(\omega_0) = \binom{5}{2} = 10$  $sort_C(\omega_0) = s_1 s_4 s_2 s_3 | s_1 s_4 s_2 s_3 | s_1 s_2$  for  $c = s_1 s_4 s_2 s_3$ 

Then HQ is the heap diagram for sortc (Wo)

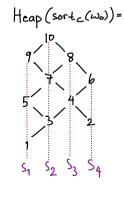
Alternatively, construct the heap diagram HQ for sortc (Wo) using lower- and upper-barred numbers:

- (1) Draw a slope -1 "diagonal" Plong
- (2) Below Dlong, for each d, put a flushed-left diagonal so uy d-1 vertices
- (3) Above Dlong, for each u, put a flushed-right diagonal sn-u+2

Ex:
$$Q = \frac{3}{4} \frac{4}{4}$$

$$Q = \frac{d = 3}{5} \frac{s_1}{s_2} \frac{s_3}{u} = 4$$

$$\frac{d = 2}{s_1} \frac{s_2}{s_4} \frac{s_4}{u} = 4$$



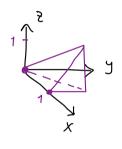
# II. The order polytope

The <u>order polytope</u> O(H) of a finite poset H is  $O(H) = \{ \hat{x} \in \mathbb{R}^{|H|} : 0 \leq \hat{x}(i) \leq 1 \text{ for all } i=1,...,|H| \}$  and  $\hat{x}(i) \leq \hat{x}(j)$  whenever  $i \leq j$  poset relation

(i.e. O(H) is the convex hull of the indicator vectors of order ideals of H)

Indicator vector of  $I = \begin{pmatrix} 2 & 1 \\ 0 & \in \mathbb{R} \\ 4 & 1 \\ 5 & 1 \\ 0 & 0 \\ 8 & 1 \end{pmatrix}$ 

(i.e. O(H) is the convex hull of the indicator vectors of order ideals of H)



Volume = 
$$\frac{base \cdot height}{3} = \frac{1}{6}$$
  
 $\left(\frac{dim}{6}\right) \left(\frac{volume}{5}\right) = \frac{3!}{6} = 1$ 

II. The order polytope

# Facts

· dīm O(H) = |H|

dim (polytope)! Vol (polytope)

· Normalized volume = | [Linear extensions of H]

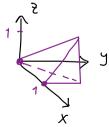
Ex 1:

Dim O(H)=10

N. Volume = 41

Ex 2: 3

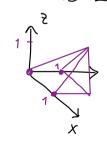
N. volume = 1



Ex 3:



N. Volume = 2



II. c-singletons | TFAE:

Def/Thm of (Hohlweg-Lange-Thomas 07) heap theory

1. WEAn is C-singleton

2. w corresponds to an order ideal I of  $H = Heap(sort_c(\omega_0))$ 

i.e. w has a reduced word which is a linear extension of I.

$$I = \{1, 2, 4, 5, 8\},$$
  
 $\omega(I) = S_1 S_2 S_4 S_3 S_4$ 

3. W avoids four patterns 312, 231 (for all n)

w is c-singleton iff Note: If C=S1S2...Sn then w avoids 312, 132  $Q = 1 \leftarrow 2 \leftarrow 3 \dots \leftarrow n$ 

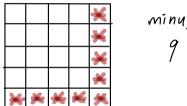
. The permutation matrix  $M(\omega)$  of  $\omega$  is the (n+1) x (n+1) matrix s.t. row; colj has entry {1 if w(i)=j

IV. Our Birkhoff subpoly tope

<u>Rem</u> Birk(c) lives in  $\mathbb{R}^{(n+1)^2} = \mathbb{R}^{25}$  but it has  $\dim = \binom{n+1}{2} = \frac{(n+1)^n}{2} = \frac{(5)^4}{2} = 10$ 

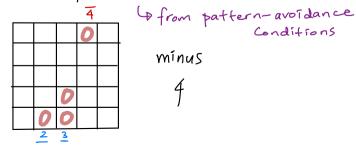
Fifteen Relations that give us dim 10:

- (Birkhoff relation)
   Each row and col sum up to 1:



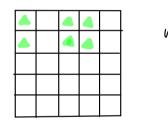
minus

(Zero relation) · These four entries must be D:



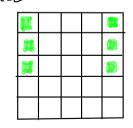
Conditions mínus

- · (Summing relation) also from pattern-avoidance conditions
- (i) These entries must sum up to 1:



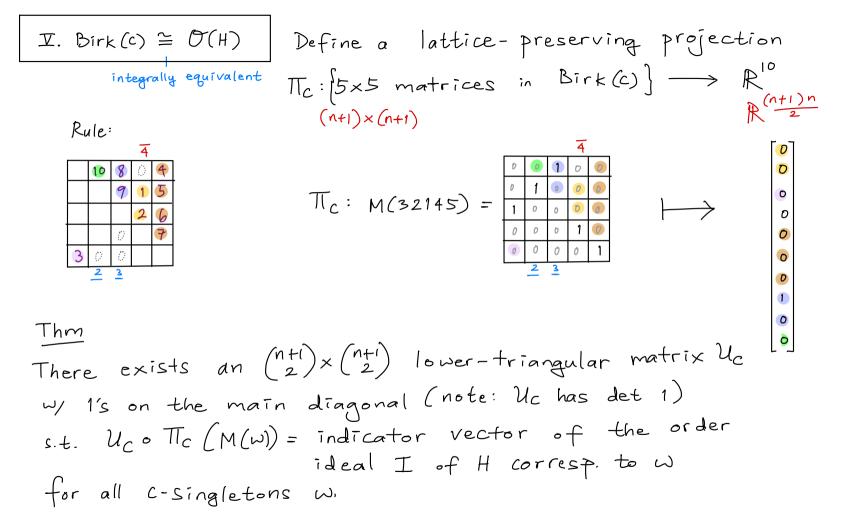
minus

(ii) These entries must sum up to 1:



minus

minus 15



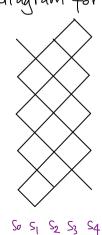
# $\coprod$ . Birk(c) $\cong$ $\mathcal{O}(H)$ in type $\mathbb{B}$

Unfolding map  $\lambda: B_n \to A_{2n-1}$ 

$$\lambda: S_0 \mapsto S_n$$
  
 $S_i \mapsto S_{n-i} S_{n+i} \quad \text{for } i > 0$ 

Heap (c) = 
$$\frac{s_0}{s_1}$$
  $\frac{s_2}{s_2}$   $\frac{s_3}{s_4}$ 

Heap diagram for sorte (wo) in Bg:



51 52 53 54 55 56 57 58 59

 $C' = S_4S_6 S_5 S_3S_7 S_1S_9 S_2S_8$ 

Further questions

Generalize to type BDEFGHI?

Further questions

### ON MAXIMAL GREEN SEQUENCES

T. BRÜSTLE, G. DUPONT AND M. PÉROTIN

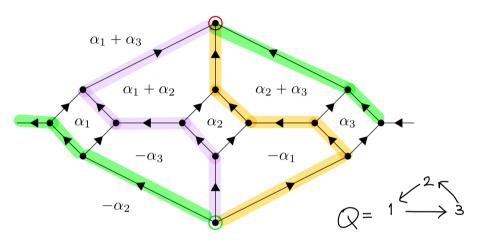


FIGURE 4. The oriented exchange graph of the cyclic quiver with 3 vertices.

Let Q be mutation-equivalent to a type A Dynkin quiver.

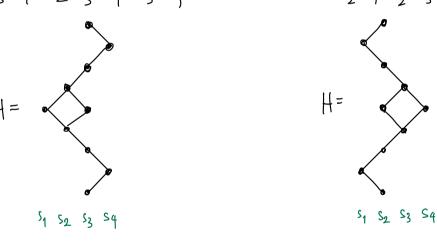
Can we define a polytope whose normalized volume is

# of longest maximal green sequences of Q?

Further questions

If u is a reduced word of and H = Heap(u), when is

Example when the two polytopes aren't equivalent:  $S_3 S_4 S_3 S_2 S_3 S_1 S_2 S_3 S_4 S_3$ ,  $S_2 S_1 S_2 S_3 S_2 S_4 S_3 S_2 S_1 S_2$ 



 $\dim \mathcal{O}(H) = 10$  and  $\dim Birk(H) = 9$ , so  $\mathcal{O}(H) \not\cong Birk(H)$ 

