Superunitary regions, generalized associahedra, and friezes of Dynkin type cluster algebras

Emily Gunawan (UMass Lowell) Jt. w/ Greg Muller

IM 12: Total positivity and applications

CanaDAM 2025

Tues, May 20, 2025

 x_1

The superunitary region of the A3 cluster algebra, embedded in \mathbb{R}^3

Idea Construct a regular CW complex with the same face structure as the generalized associahedron

E.g. for type C2 cluster algebra:

 $vertices \leftrightarrow clusters$

facets \leftrightarrow cluster variables

interior \longleftrightarrow the empty subcluster

Totally positive region

Def A: a cluster algebra. • Define a topological space $A(\mathbb{R}) \coloneqq \{ring \text{ homomorphisms } p: A \to \mathbb{R}\}$ with the coarsest topology for which, for all $a \in A$, $f_a \colon A(\mathbb{R}) \to \mathbb{R}$ the map $P \mapsto p(a)$ is continuous. • The totally positive region of A is $A(\mathbb{R}>o) \coloneqq$ the set of ring homomorphisms $p: A \to \mathbb{R}$ which send each cluster variable to a positive number. • The final content of $A \to \mathbb{R}$ which

Cor $\mathcal{A}(\mathbb{R}_{\geq 1})$ is closed and bounded.

<u>Pf</u> The generalized associated ron is a polytope.

An application of superunitary regions: A uniform proof of a previously open conjecture that there are finitely many positive integral friezes, for each Dynkin type.

Fact If Q is Dynkin,
$$\mathcal{A}(\mathbb{Z}_{\geq 1}) \xleftarrow{1-1} \mathbb{Z}_{\geq 1}$$
 - friezes of Q
frieze points

Thm B If Q is Dynkin, there are finitely many
$$\mathbb{Z}_{\geq 1}$$
-friezes of Q.
Pf Earlier we said $\mathcal{A}(\mathbb{Z}_{\geq 1})$ is a finite set.

History of proofs, by type	Techniques		
√ Type A Conway-Coxeter 1970s	Polygon triangulations		
√ BCD,G2 Fontaine-Plamondon 2014	Type D triangulations (once-punctured polygon)		
✓ E6, Fq Cuntz-Plamondon 2018	{E6 friezes} → {2-friezes of height 3}		
✓ E7, E8 G Muller 2022 Conjecture for E7, E8 was open until	Uniform proof for all types using compactness of the superunitary region		

<u>Conjecture</u> C Any embedding of the superunitary region $\mathcal{A}(\mathbb{R}_{\geq 1})$ is contained in the convex hull of the extreme points.

	Dynkin Type	# of Positive Integral Friezes	# of Unitary Friezes = (# of Clusters) $\underline{-}$	(# of extreme
	A_n	$\frac{1}{n+2}\binom{2n+2}{n+1}$	$\frac{1}{n+2}\binom{2n+2}{n+1}$	points)
	B_n	$\sum_{m=1}^{\sqrt{n+1}} \binom{2n-m^2+1}{n}$	$\binom{2n}{n}$	
	C_n	$\binom{2n}{n}$	$\binom{2n}{n}$	
	D_n	$\sum_{m=1}^n d(m) \binom{2n-m-1}{n-m}$	$\frac{3n-2}{n}\binom{2n-2}{n-1}$	
To prove these	E_6	868	833	
prove Conjecture C, or	E_7	Recently Proven: 4400)	4160	
erave the of	E_8	by Zhang 26952)	25080	
· prove a.	F_4	112	105	
Z/2- Value	G_2	9	8	
friezes of		$d(m):= ext{ the number of divisor}$	rs of m	
1 E2 & E8	T.	ABLE 1. Counts of positive inte	egral friezes	
type of 14 4				
are U and 1				

$$\frac{\operatorname{Purier} \operatorname{Pynkin}_{tgpe} \operatorname{Superunitary}_{region} \operatorname{Inegualities}}{\operatorname{pregion}}_{region}$$

$$\frac{\operatorname{Purier} \operatorname{Pynkin}_{tgpe} \operatorname{Superunitary}_{region} \operatorname{Inegualities}}{\operatorname{Pregion}}_{region}$$

$$\frac{r_{22}}{r_{22}}$$

$$\frac{r_{22}}{r_{22}}}$$

$$\frac{r_{22}}{r_{22}}$$

$$\frac{r_{22}}{r_{22}}$$

$$\frac{r_{22}}{r_{22$$

FIGURE 1. The superunitary regions of types A_2 , B_2/C_2 , and G_2 (embedded in $\mathbb{R}^2_{>0}$)

Why 1 ?