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Solitary waves (solitons)

Scott Russell’s first encounter (August 1834)

“I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped.

[The mass of water in the channel] rolled
forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued
its course along the channel apparently without
change of form or diminution of speed.

I followed it on horseback, ... and after a chase
of one or two miles I lost it in the windings of
the channel.”

Soliton on the Scott
Russell Aqueduct on
the Union Canal
(July 1995)

(ma.hw.ac.uk/solitons/press.html)

Two soliton animation: www.desmos.com/calculator/86loplpajr
1 / 24

http://www.ma.hw.ac.uk/solitons/press.html
https://www.desmos.com/calculator/86loplpajr


Permutations

Let Sn denote the set of permutations on the numbers {1, . . . , n}.

We will represent permutations in one-line notation, as

w = w(1)w(2) · · · w(n) ∈ Sn.

Example
A permutation in S6 in one-line notation: 452361



(Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball
configurations.
▶ At each configuration, balls are labeled by numbers 1

through n in an infinite strip of boxes.
▶ Each box can fit at most one ball.

Example
A possible box-ball configuration:

· · · 4 5 2 3 6 1 · · ·
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Box-ball move (from t = 0 to t = 1)

Balls take turns jumping to the first empty box to the right,
starting with the smallest-numbered ball.

t = 0 · · · 4 5 2 3 6 1 · · ·

· · · 4 5 2 3 6 1 · · ·

· · · 4 5 3 6 2 1 · · ·

· · · 4 5 6 2 1 3 · · ·

· · · 5 4 6 2 1 3 · · ·

· · · 4 5 6 2 1 3 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·
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Box-ball moves (t = 0 through t = 5)

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Solitons and steady state

Definition
A soliton of a box-ball system is an increasing run of balls that moves
at a speed equal to its length and is preserved by all future box-ball
moves.

Example
The strings 4, 25, and 136 are solitons:

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·

After a finite number of box-ball moves, the system reaches a steady
state where:

▶ each ball belongs to one soliton

▶ the lengths of the solitons are weakly decreasing from right to left
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Tableaux (English notation)

Definition
▶ A tableau is an arrangement of integers {1, 2, ..., n} into rows

whose lengths are weakly decreasing.
▶ A tableau is standard if its rows and columns are increasing.

Example

Standard Tableaux:
1 2 4

3 5

6 7

1 3 6

2 5

4

1 3 4

2 7

5 8

6

Nonstandard Tableau:
1 2 3

5 6 7

4
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Soliton decomposition

Definition
To construct the soliton decomposition SD(w) of w, start with
the one-line notation of w, and run box-ball moves until we reach
a steady state; the 1st row of SD(w) is the rightmost soliton, the
2nd row of SD(w) is the next rightmost soliton, and so on.

t = 0 · · · 4 5 2 3 6 1 · · ·
t = 1 · · · 4 5 2 1 3 6 · · ·
t = 2 · · · 4 5 2 1 3 6 · · ·
t = 3 · · · 4 2 5 1 3 6 · · ·
t = 4 · · · 4 2 5 1 3 6 · · ·

SD(452361) =
1 3 6
2 5
4

with shape (3, 2, 1).
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RSK bijection

The classical Robinson–Schensted–Knuth (RSK) insertion
algorithm is a bijection

w 7→ (P(w),Q(w))

from Sn onto pairs of size-n standard tableaux of equal shape.

Example
Let w = 452361. Then

P(w) =
1 3 6

2 5

4

and Q(w) =

1 2 5

3 4

6

.
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RSK bijection example
Let w = 452361.

P : 4 4 5
2 5
4

2 3
4 5

2 3 6
4 5

1 3 6
2 5
4

P(w) =
1 3 6
2 5
4

Q : 1 1 2
1 2
3

1 2
3 4

1 2 5
3 4

1 2 5
3 4
6

Q(w) =
1 2 5
3 4
6

Insertion and bumping rule for P
▶ Insert x into the first row of P.

▶ If x is larger than every element in the first row, add x to the end
of the first row.

▶ If not, replace the smallest number larger than x in row 1 with x.
Insert this number into the row below following the same rules.

Recording rule for Q
For Q, insert 1, . . . , n in order so that the shape of Q at each step
matches the shape of P.
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Q(w) determines the box-ball dynamics of w

Theorem (Cofie–Fugikawa–G.–Stewart–Zeng 2021)
If Q(v) = Q(w), then the soliton decompositions of v and w have
the same shape.

Example
v = 21435 and w = 31425

Q(v) = Q(w) =
1 3 5
2 4

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3
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When is SD(w) a standard tableau?

Example

SD(452361) =
1 3 6
2 5
4

SD(21435) =
1 3 5
4
2

SD(31425) =
1 2 5
4
3

Theorem (Drucker–Garcia–G.–Rumbolt–Silver 2020)
Given a permutation w, the following are equivalent:

1. SD(w) is standard

2. SD(w) = P(w)

3. the shape of SD(w) is equal to the shape of P(w)

Definition (good permutations)
A permutation w is good if the tableau SD(w) is standard.
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Q(w) determines whether w is good

Proposition
Given a standard tableau T , either

All w such that Q(w) = T are good,

or

All w such that Q(w) = T are not good.

Definition (good tableaux)
A standard tableau T is good if T = Q(w) and w is good.

▶ Question: How many good tableaux are there?

13 / 24



Answer: Good tableaux are Motzkin objects!

Our Main Theorem (G.–Hong–Li–Okonogi-Neth–Sapronov–
Stevanovich–Weingord)
The good standard tableaux, {Q(w) | w ∈ Sn and SD(w) is standard},
are counted by the Motzkin numbers:

M0 = 1, Mn = Mn−1 +

n−2∑
k=0

Mk Mn−2−k

M3 = 4

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Greene’s theorem and localized Greene’s theorem

My inspiration and also important tools in our proofs:

▶ “Greene’s theorem” (Greene 1974): The shape of P(w)
records permutation statistics (sizes of largest unions of
increasing and decreasing sequences) of w

▶ “Localized version of Greene’s theorem” (Lewis – Lyu –
Pylyavskyy – Sen 2019): The shape of SD(w) records
localized versions of these permutation statistics of w
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Motzkin recursion and good tableaux

Definition
A sequence of finite sets of objects A0, A1, A2, . . . is a Motzkin
object if |A0| = |A1| = 1, and, for n ≥ 2,

|An| = |An−1|+
n−2∑
k=0

|Ak| · |An−k−2|

Proof outline
1. Define a goodness-preserving operation on tableaux for every

operation in the Motzkin recursion:
column bump, row wrap, and tilde multiplication

2. Prove that all good tableaux belong to the recursive family
generated by these operations
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Tilde product

We define a slight variation of tableaux multiplication (from
Fulton’s “Young tableaux”) and call it tilde multiplication.

Example
Consider T1 =

1 2 5
3 4

, T2 = 1
2

. Define T1 = 3 4 7
5 6

. Then we

compute that

T1×̃T2 = T1 × T2 =

1 4 7
2 6
3
5

Theorem (Tilde multiplication preserves goodness)
Suppose T1, T2 are standard tableaux. Then, T1×̃T2 is good if and
only if T1 and T2 are good.
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Column bump

The column bump of T is bump(T ) = T ×̃ 1 .

Example

Take T1 =
1 2 3
4 6
5

, T2 = 1 2
3 4

.

Then bump(T1) =

1 3 4
2 7
5
6

, bump(T2) =
1 3
2 5
4

Theorem (Bump preserves goodness)
T is good if and only if bump(T ) is good.
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Row wrap
Let T be a standard tableau of size n. The row wrap of T ,
denoted wrap(T ), is constructed as follows:
▶ Increase every element of T by 1 to get T ′

▶ Prepend the first row of T ′ by 1

▶ Append the first row of T ′ by n+ 2

Example

Take T1 =
1 2 3
4 6
5

, T2 = 1 2
3 4

.

Then wrap(T1) =
1 2 3 4 8
5 7
6

, wrap(T2) = 1 2 3 6
4 5

Theorem (Wrap preserves goodness)
T is good if and only if wrap(T ) is good.
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Recursive family of good tableaux

Definition
Let K0 = {∅} and K1 =

{
1
}
. Recursively define a set Kn of

size-n good tableaux:

▶ for each Q ∈ Kn−1,

bump(Q) ∈ Kn

▶ for each pair of Q1 ∈ Kk and Q2 ∈ Kn−k−2 for
0 ≤ k ≤ n− 2,

Q1×̃wrap(Q2) ∈ Kn

Example

K2 =
{

1 2 ,
1
2

}
, K3 =

{
1 2 3 ,

1 2
3

,
1 3
2

,
1
2
3

}
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Kn as a Motzkin object

Recall the Motzkin recursion.

Definition
A sequence of finite sets of objects A0, A1, A2, . . . indexed by n is
said to be a Motzkin object if |A0| = |A1| = 1 and for n ≥ 2,

|An| = |An−1|+
n−2∑
k=0

|Ak| · |An−k−2|

Theorem
▶ The Kn tableaux are a Motzkin object.
▶ A tableau T of size n is good if and only if T ∈ Kn. In

particular, good tableaux of size n are a Motzkin object.
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Further question: Characterize good permutations using
consecutive permutation patterns.

▶ A corollary of our work + Elizalde et al is that good
permutations can be characterized by consecutive pattern
avoidance.

▶ Note: Good permutations are impossible to classify using
classical permutation patterns.

▶ Note (added after the talk): Elizalde informed us that the
required set of consecutive permutation patterns is infinite
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Further question: Is there a natural way to generalize the
tilde product to (non-standard) soliton decomposition
tableaux?

▶ Given two standard tableaux T1 and T2, the tilde product
T1×̃T2 is constructed simply by starting with T2 and adding
columns below it.

▶ In our work, we prove that the box-ball soliton partition
Λ(T1×̃T2) of T1×̃T2 can be constructed by starting with the
box-ball soliton partition Λ(T2) of T2 and then adding
columns of Λ(T1) below it.

This makes us think that we should be able to define a
similar tilde product directly on (non-standard) soliton
decomposition tableaux.
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Further question: Is there a natural subclass of the good
tableaux which is enumerated by the Catalan numbers?
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Y O U !
A N K
T H



Open Problem Session 3-6pm today in Room 226

You’re welcome to join us for the Open Problem Session (of the
“Geometric and Algebraic Combinatorics" session).

▶ When: 3pm today

▶ Location: 226, Hartford Times Building

▶ There is a whiteboard so you can present on the board
(or project a tablet or slides)

▶ Target audience: grad students and recent PhDs

▶ In addition to listening, you are welcome to present
problem(s), 10–15 mins per problem.

▶ Please email me at emily_gunawan@UML.edu if you
wish to present.



Greene’s theorem, slide 1/3
Definition (longest k-increasing subsequences)
A subsequence σ of w is called k-increasing if, as a set, it can be
written as a disjoint union

σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σk

where each σi is an increasing subsequence of w. Let ik := ik(w) denote
the length of a longest k-increasing subsequence of w.

Example (Let w = 5623714.)

▶ The longest 1-increasing subsequences are
567, 237, and 234.

▶ The longest 2-increasing subsequence is given by
562374 = 567 ⊔ 234.

▶ A longest 3-increasing subsequence (among others) is given by
5623714 = 56 ⊔ 237 ⊔ 14.

▶ Thus, i1 = 3, i2 = 6, and ik = 7 if k ≥ 3.



Greene’s theorem, slide 2/3
Definition (longest k-decreasing subsequences)
Similarly, a subsequence σ of w is called k-decreasing if, as a set, it can
be written as a disjoint union

σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σk

where each σi is an decreasing subsequence of w. Let dk := dk(w)
denote the length of a longest k-decreasing subsequence of w.

Example (Let w = 5623714.)

▶ The longest 1-decreasing subsequences are
521, 621, 531, and 631.

▶ A longest 2-decreasing subsequence (among others) is given by
52714 = 521 ⊔ 74.

▶ A longest 3-decreasing subsequence (among others) is given by
5623714 = 52 ⊔ 631 ⊔ 74.

▶ Thus, d1 = 3, d2 = 5, and dk = 7 if k ≥ 3.



Greene’s theorem, slide 3/3
Theorem (Greene, 1974)
Suppose w ∈ Sn. Let λ = (λ1, λ2, λ3, . . . ) denote the RS partition
of w, that is, let λ = shP (w). Let µ = (µ1, µ2, µ3, . . . ) denote the
conjugate of λ. Then, for any k,

ik(w) = λ1 + λ2 + . . .+ λk,

dk(w) = µ1 + µ2 + . . .+ µk.

Example
By Greene’s theorem, the RS partition is equal to
λ = (i1, i2− i1, i3− i2) = (3, 3, 1). We can verify this by
computing the RS tableaux

P (w) =
1 3 4
2 6 7
5

, Q(w) =
1 2 5
3 4 7
6

.



A localized version of Greene’s theorem, slide 1/3

Definition (A localized version of longest k-increasing
subsequences)
Let i(u) := the length of a longest increasing subsequence of u.

For w ∈ Sn and k ≥ 1, let Ik(w) = max
w=u1|···|uk

k∑
j=1

i(uj), where the

maximum is taken over ways of writing w as a concatenation
u1 | · · · | uk of consecutive subsequences.

Example
Let w = 5623714. For short, we write Ik := Ik(w). Then

I1 = i(w) = 3 (since the longest increasing subsequences are 567, 237, 234),
I2 = 5 (witnessed by 56|23714 or 56237|14),
I3 = 7 (witnessed uniquely by 56|237|14), and
Ik = 7 for all k ≥ 3.



A localized version of Greene’s theorem, slide 2/3

Definition (A localized version of longest k-decreasing
subsequences)
Let D(u) := 1 + |{descents of u}|.

For w ∈ Sn and k ≥ 1, let Dk(w) = max
w=u1⊔···⊔uk

k∑
j=1

D(uj), where the

maximum is taken over ways to write w as the union of disjoint
subsequences uj of w.

Example
Let w = 5623714. For short, we write Dk := Dk(w). Then

D1 = D(w) = 1 + |descents of 5623714| = 1 + |{2, 5}| = 3,

D2 = 6 (take subsequences 531 and 6274, among other partitions),
D3 = 7 (take subsequences 52, 631, and 74, among other partitions), and
Dk = 7 for all k ≥ 3.



A localized version of Greene’s theorem, slide 3/3

Theorem (Lewis–Lyu–Pylyavskyy–Sen 2019)
Suppose w ∈ Sn. Let Λ = (Λ1,Λ2,Λ3, . . . ) denote shSD(w). Let
M = (M1,M2,M3, . . . ) denote the conjugate of Λ. Then, for any k,

Ik(w) = Λ1 + Λ2 + . . .+ Λk,

Dk(w) = M1 +M2 + . . .+Mk.
Example
Let w = 5623714. By the above theorem,
sh SD(w) = (I1, I2 − I1, I3 − I2) = (3, 2, 2). We can verify this by
computing the soliton decomposition SD(w), which turns out to be the
(non-standard) tableau

1 3 4
2 7
5 6

.

Note: sh SD(w) = (3, 2, 2) is smaller than shP (w) = (3, 3, 1) in the
dominance order.



Further question: Characterize permutations with the
same soliton decomposition

326541

1 4
2
5
6
3

362541
1 4
2 5
3
6

365241
1 4
2 5
3
6

365214
1 4
2 5
3
6

635214
1 4
2 5
3
6

635241
1 4
2 5
3
6

632541

1 4
2
5
3
6

r = 632514
1 4
2 5
3
6

632154

1 4
5
2
3
6

KB

K2
K1 K2

K1K2

K1

KB

KB

Permutations connected by Knuth moves to r = 632514 and
their soliton decompositions


