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Jim's 2005 article based on work w/ D .

Thurston &

Boston-area undergraduates starting in
2001

This talk

· Conway-Coxeter

friezes

· cluster algebras
of type A

· Several versions

of "snakes" from
Jim's paper

·Subwords of

binary numbers



Conway - Coxeter friezes (An friezes)
,

1970s
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[Conway - Coxeter 1970s]
· An friezes <> triangulations of (n +3)

- you

· The array is
invariant under a glide reflection



A bipartite dual graph G(T) of a triangulation T
and G(ij) for each diagonal (ij) .

Triangulation T T and G(T) G(T) G(14)
2 3

2
· ⑧

I ↑·r⑧

⑧·
·

j · ·

5
⑧

6 6

- black vertices of G vertices of the triangulation T
- white vertices of G #> triangular faces of T
- edges of G (T) => all incidences between vertices & faces in T

Note ! # black vertices = 2 + # white vertices
-

bi=

For ifj in [1 , ..., b) , G(ij) : = G(T) - [vertices : and j]



Def m(ij) = # perfect matchings of G (ij)

G(14)

m(14) = 5

↑y
· 5

G(46) m(46) = 3
2

-
1- i·⑧ X

⑧

5



Kno's condensation lemma (03)

If G is a bipartite graph w/

#black vertices = 2 + # white vertices
and

a
,
b
, c,d are black vertices around

a face of G, then

m(ac)m(bd) = m(ab) m(cd) + m(ad)m(bc)
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Thm (Carrol - Price 2003 , which built on Itsara-Le-Musiker-Price - Viana)

The Conway - Coxeter frieze of a triangulation is equal to

00 m (12) m(23) m(34) m(45) 00

00 m ( 3) m(24) m(35) · .

(Interpret subscripts mod n)
00 m(n3) m(14) m(2stm(36) 00

00 m(n4)m(15) m(26) 00

: : :

This explains the glide-symmetry of a frieze ,

since G(ij) = G(ji)



[Fomin-Zelevinsky 01-02]

from a triangulation to type An Cluster variables

2
one3

Quiver Q(T) : Mutation/ flip rule :
· ⑧

one One b b
Y

A

Y Mk
I A kd -a d
⑧ xX+z .4 X- kI

Z C C

One
↑

one
X

k = adtb
⑧

·

5
6 one

· Put weight along edges : Boundary edges M(i , i+ 1) : = 1

M(26) := x , M(25)
:= y , M(35)

: = z

· The rest of diagonals M(ij) are rational functions computed
recursively following the mutation rule

Ex : M(36) = y =
xz + 1

M(46) = z =
+

Y Z

2 · 2
· ⑧

↑ ⑧ ↑
=
xz + 1 + y

· xyz · I y ·4 yz
X z

· ·
·

5



[Fomin-Zelevinsky 01-02]

from a triangulation to type An Cluster variables

2
one 3

Quiver Q(T) : Mutation/ flip rule :
· ⑧

G

one Ye b b
Y Y Mk

I A kd -a d
⑧ x42 :4 X- kI

X Z C C

One
↑

one
X

k = adtb
⑧

·

5
6 one

· Put weight along edges : Boundary edges M(i , i+ 1) : = 1

M(26) := x , M(25)
:= y , M(35)

: = z

· The rest of diagonals M(ij) are rational functions computed
recursively following the mutation rule

· cluster variables : All rational functions M(ii)

· [Laurent Phenomenon 2001]
In general , the cluster variables are Laurent polynomials



The original perfect matching formula (Propp et al 105]

E weight of pm of G(ij) /(weight of all diagonals)M(ij) = perfectI
pm

Imatchings

Triangulation T and G(T) G(T) G(14)
2

one

·

⑧

I

84
↑n⑧ one

65

⑧ ⑧ ⑧ ⑧ ⑧

M(14) = (yz + y + y + 1 + xz]/(xyz)



Positivity Conjecture" of cluster variables (proven in general in '13 , 14 :
All coefficients of each Laurent polynomial are positive

Corollary of the original perfect matching formula :
In type A , the cluster variables are Laurent polynomials w/

positive coefficients

Thm (Propp et allO5)

The cluster variables for type A form a Conway - Coxeter frieze

w/ rational functions as entries

... M(12) M(23) M(34) M(45) 00

00 M((3) M(24) M(35) 00

(Interpret subscripts mod n)
00 M(nz) M(14) M (25) M(36) 00

00 M(n4) M(15) M(26) 00

: : :



From bipartite graph G(ij) to many versions of "snakes"
sutation

more convenient than Glij) for com,
G(16)

3 4 3 4

2 5 5 2 5
⑨ ⑨ ⑨ ⑨

1 6

,

⑨
⑧

·
,

⑨
⑧

·

7

⑧ ⑳ ⑧

· · ·
go go go

Shear forced edges (belonging to every pm)
and forbidden edges (cannot be in a pm)-

43
⑧ 3 ·

⑨ ⑨

2 5 2 5
⑨ ⑨ shear ⑨ ⑨

-

,
·

7
,

·

7

1 ·go

# pm's of G (16)
= # pms of this "snake" (version D



# pm's of "snake" (ver 1) =#forward paths from leftmost vertex

ver I
to rightmost vertex in "paths snake" (vere)

- &

3 4 ver 2
⑧ -

⑨

2 5 & -

⑨ ⑨

* -> * -> ->

- L->Y
Y RR R LL
-

,
·

7 - -

·

3 · - ↑-

⑨

2 5

·
⑨

-

, 17 1

str.++-++
7

·
- - ↑ · end

3

a ·

5 start......⑨

I
I I

-

-1 ·

1 ~ ~

, 1 -.-. ). end

·



Conway - Coxeter's "primary school algorithm"
also works for "paths snake" (ver 2)

start 1 !! !5. 91.

# of paths from "start"

-S to this vertex = 4
- ↑ & & - ↑ ↑

1 2 3 4 4 4 13

I11
. !59The four paths : 1 .

1 . -.

A
- ----- ↑ ↑

1 2344413

I 11 1 5 9
2 .

I. & & -

- > ↑ ↑·

j 444131 2

I 1 I 5 9

3.
1.- ...

↓
- ↑ ·---.. ↑

1 2 34 44 13

I 1 I 1 5 9
4.
......... &

&
- -> ↑

44131 2



"paths snake" (ver2) as a border strip skew Young diagram

1

-

start 2 41 . S

- 3 4

119159
-

&

↑

I
end

1. & & ↑ I - 4 13

* 7 - 9
- L - -

- ↑ ↑ RR R LL 7 5
4131 23 4 -

1



The snake graph (ver 3)

· a dual of the "paths Snake" (ver2)
· used most frequently
· # paths from left to right in "paths snake" (vere)
= # perfect matchings of the snake graph

Given quiver , startwy a square II,

build a graph by gluing square east/north of the form

↑ ↓ ↓ ↑
-> ->t 1- 1-

↑
-

↑ ↓ ↓
RR RR RL RL L LL LRLR

Ex : Quiver : The snake graph :
(ver 3)

x =

I- L

RR R LL



Duality of the snake graph (ver 3) and the "paths snake" (ver2) :

& end

start
-

-
# perfect matchings= 13

, #paths = 19

start
T

end

- -

# perfect matchings= 19
. #paths = 13



The snake graph with multiple edges (ver 4)

· Turn snake graph G into a straight snake multigraph by

-- 6
*delete # delete

-
* *

- => =

I I
*

I
*

dele*
->

↑
* delete

· A "folklore of perfect matchings" : #pm's of G = # pm's of G

Ex : #pm's is 1 + 3(4) = 13

matchings w/
11 + 1 I north and South edges
- ~

3 options 4 options

In general # (max sequences of + + ... -> and 77 ... 7&
RR... M LL... L

= 1 +#Is in the snake multigraph (ver 4)



(Benjamin - Quinn '03 "Proofs that really count"]
Tilings of a board by "dominoes" and "stackable squares"

↓
I I

& ..) -

1
1 x 2 ·

-

bij
=> the pm's of the snake multigraph (ver 4)

Here
,
the board is 1x2 & the possible tilings are

- one possibility : one domino tile

#
- I I

- 12 possibilities :

· put 1
, 2 , or 3 square tiles on the first square ; and

· put 1
, 2 , 3 ,

or 4
square tiles on the second square

-2nd edge
-

1 1
-

# ~
~ 3rd edge

· # of tilings can be computed using continued fraction
ex [3 ,4) = 3 +-= of tilings



Snake graphs since 2005

· [Musiker - Propp'o6] used similar models to prove
positivity of cluster variables of rank 2 affine type

· [Fomin - Shapiro-Thurston 106
, Cluster algebras from

triangulations of general marked surfaces ]
&

Xz
X,- X3

called type *
III I ↓ -> 124! X

,

x
M

X2

one arrow
arrows clockwise

counterclockwise

[Musiker-Schiffler-Williams 109-110]
The snake graphs (ver 3) were used to prove positivity of
all cluster algebras from surfaces & to study bases

· [Canak1-Schiffler 12-17]
Abstract snake graphs & continued fractions

&

& :
- -

· Researchers interested in cluster theory & combinatorial models



[Bailey - G. 10-119] Perfect matchings of a snake graph

bij
1 subwords of base-2 expansions of a natural number

Def The binomial coefficient (2) of two words is the # of

times v occurs as a subsequence of w

Ex : w = 101001

() = 6
v = 101

101001 101001 101001101001101001101001

Def o If (E ) / 1
,
we say v is a mubword of w.

· Given a positive integer, we can write its binary expansion
as a binary word W = 1 WeWs ... Wh

.

Let Q(w) be the type Ae quiver wy vertices 1
, ...,

I sti

i-to if wi= and 1
?
if w = 1

Ex : Q(101001)

&

I i-1
;

Y 6
↑ Y5X1



[Bailey - G. 10-119] Perfect matchings of a snake graph

bij
1 subwords of base-2 expansions of a natural number

/Bailey - 6 ! 10 - 19]
Perfect matchings - subwords of w > antichains

of Snake Graph (Q(r) M
X y

of Q(w)

Ex : W = 10 11 10 down-sets of Q(w)
L

Q(w) =
4
*

183
2

From "Combinatories

on words" paper

[Leroy-Rigo-
Stipulati 17]
- trie of subwords , antichain trie , antichains



Question : subwords of cyclic binary numbers &

cyclic snake graphs

· Fibonacci numbers Fo = 0
,
Fi = 1

, Fn = Fn-1 + Fn -2

0
,

1
,

1
,
2
,
3
,
5
,
8
,
13
,
21
,
34
,
55
,
89
,
144 , 233 , ...

Every-other Fibonacci numbers show up in computation

of cluster variables of type All 1- 2

Their snake graphs are of the form

-o ( ,
11

,
111

( ---

2 5 13

· In Benjamin - Quinn's model , Fibonacci numbers count tilings
where the squares cannot be stacked



Question : subwords of cyclic binary numbers &

cyclic snake graphs

Lucas numbers Lo = 2 , L = 1
, Ln = In-1 + In-e

2,1 ,3 , 4 ,711 ,
18
,
2
,
9
,
47

,
76

, 123...

Every-other Lucas numbers show up in computation

of "bangles" and "bracelets" bases of type pl 12

They correspond to cyclic snake graphs (called band graph)
of the form

I
#

&
# 11 T 1...

3 7 18

- -

· In Benjamin - Quinn's model , the Lucas numbers count
tilings of a circular board

In general , #pm's of band graph = #down-sets of a type Apg quiver .
Find an analog of this in the settings of "circular" binary numbers
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