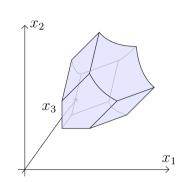
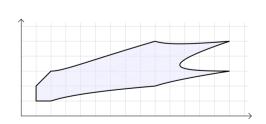


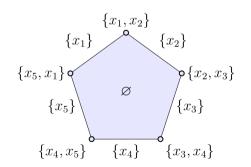
Superunitary regions, generalized associahedra, and



friezes of Dynkin type cluster algebras



September 23, 2023



E.g. Type $C_2 \triangle : a \xrightarrow{(2,1)} b$

Choose an orientation of Δ to get a "valued quiver" :

$$Q = a \xrightarrow{(2,1)} b$$

$$1 \quad \{x, y\}$$

$$1 \quad \text{initial cluster}$$

initial (valued) quiver

The exchange graph for type C2 cluster algebra

$$\left\{ \frac{y+1+x^2}{xy}, \frac{y+1+x^2}{y} \right\} = \frac{y+1+x^2}{xy} \left\{ \frac{y+1+x^2}{xy}, \frac{x^2+1+2y+y^2}{x^2y} \right\}$$

$$\frac{1+x^2}{y} \qquad \qquad \frac{x^2+1+2y+y^2}{x^2y}$$

$$\frac{x^2+1+2y+y^2}{x^2y}$$

$$\left\{ \frac{x^2+1+2y+y^2}{x^2y} \right\}$$

The six cluster variables:

$$\bullet \ \frac{1+X^2}{y}$$

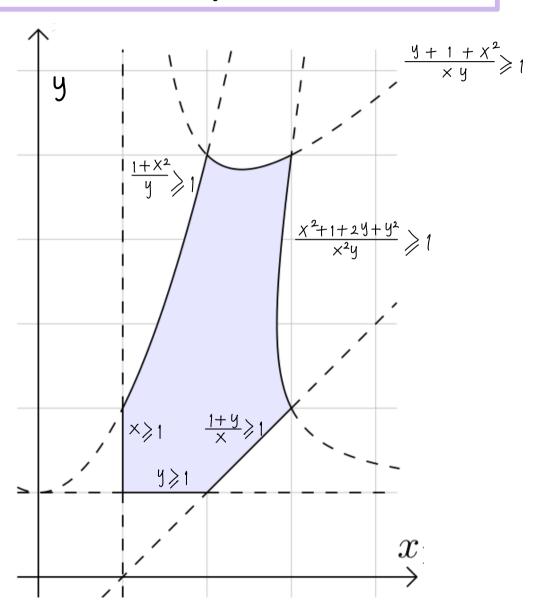
$$\bullet \frac{y+1+\chi^2}{\times y}$$

$$\bullet \frac{x^2 + 1 + 2y + y^2}{x^2 y}$$

The superunitary region of the C_2 cluster algebra, embedded in \mathbb{R}^2

The six cluster variables, each set to > 1:

- × > 1
- y > 1
- $\frac{1+X^2}{y} \geqslant 1$
- $\bullet \frac{y + 1 + \chi^2}{\times y} \geqslant 1$
- $\bullet \frac{x^2 + 1 + 2y + y^2}{x^2 y} \geqslant 1$
- $\frac{1+y}{x} \geqslant 1$

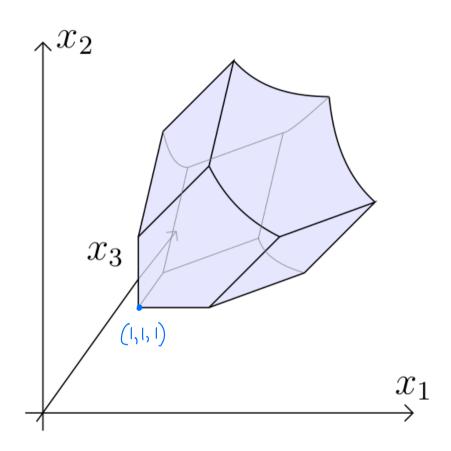


The superunitary region of the A_3 cluster algebra, embedded in \mathbb{R}^3

Initial quiver $1 \xrightarrow{X} 2$ Initial cluster $\{X_1, X_2, X_3\}$

The nine cluster variables, each set to >1:

$$\begin{array}{c|cccc} x_1 \geqslant 1 & x_2 \geqslant 1 & x_3 \geqslant 1 \\ \frac{x_2 + x_3}{x_1} \geqslant 1 & \frac{x_1 + x_3}{x_2} \geqslant 1 & \frac{x_1 + x_2}{x_3} \geqslant 1 \\ \frac{x_1 + x_2 + x_3}{x_1 x_2} \geqslant 1 & \frac{x_1 + x_2 + x_3}{x_2 x_3} \geqslant 1 & \frac{x_1 + x_2 + x_3}{x_1 x_3} \geqslant 1 \end{array}$$



[Chapoton - Fomin - Zelevinsky 2002]

Let A be a Dynkin type cluster algebra.

The exchange graph of A is the 1-skeleton of a polytope called the generalized associahedron of A.

Faces of the gen. associahedron are indexed by subclusters:

a subcluster is a subset of a cluster

Idea Construct a regular CW complex with the same face structure as the generalized associahedron

E.g. for type C2 cluster algebra:

$$\left\{\frac{y+1+x^{2}}{xy}, \frac{y+1+x^{2}}{y}\right\} \xrightarrow{xy} \left\{\frac{y+1+x^{2}}{xy}, \frac{x^{2}+1+2y+y^{2}}{x^{2}y}\right\}$$

$$\frac{1+x^{2}}{y}$$

$$\frac{x^{2}+1+2y+y^{2}}{x^{2}y}$$

 $vertices \longleftrightarrow clusters$ $facets \longleftrightarrow cluster variables$ $interior \longleftrightarrow the empty subcluster$

Totally positive region

<u>Def</u> A: a cluster algebra.

- Define a topological space $A(R) := \{ring \text{ homomorphisms } p: A \rightarrow R \}$ with the coarsest topology for which, for all $a \in A$, $fa: A(R) \longrightarrow R$ the map $P \longmapsto p(a)$ is continuous.
 - The totally positive region of A is A(R)0):= the set of ring homomorphisms $p:A \to R$ which send each cluster variable to a positive number.

Fact Given a cluster $X = \{X_1, X_2, ..., X_r\}$ in A,

we can identify $A(R_{>0})$ with the positive orthant $R^r>0$ via homeomorphism $f_X: A(R_{>0}) \cong R^r>0$ $P \mapsto (P(x_1), P(x_2), ..., P(x_r))$ E.g. $X = \{X_1, X_2\}$ if $P(x_1) = 1$, $P(x_2) = 1$ then $f_X(P) = (1,1)$ if $P(x_1) = 3$, $P(x_2) = 2$ then $f_X(P) = (3,2)$

Superunitary region

"bigger than 1"

Main Def The superunitary region of a Dynkin type cluster algebra A is

Given a cluster X, use homeomorphism $f_X: A(R>0) \xrightarrow{\sim} R^r>0$ Totally positive Positive

to embed $\mathcal{A}(R_{\geq 1})$ into $R^{r}_{>0}$:

superunitary region

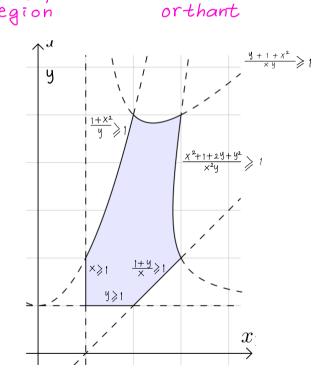
Set each cluster variable > 1

(positive Laurent polynomial)

E.g. Embedding of type C_2 $A(\mathbb{R}_{\geqslant 1})$ into \mathbb{R}^2

using
$$a \xrightarrow{(2,1)} b$$

 $x = \{x, y\}$



$$X := \{x, y\}$$

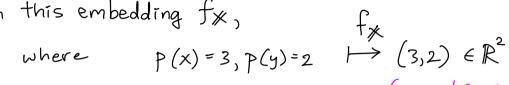
In this embedding fx,

$$P\left(\frac{1+X^2}{y}\right) = \frac{1+9}{2} = 5$$

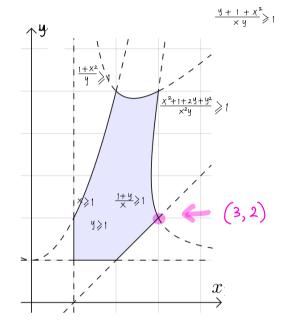
$$P\left(\frac{y+1+x^2}{x y}\right) = \frac{2+1+9}{6} = 2$$

$$P\left(\frac{x^2+1+2y+y^2}{x^2y}\right) = \frac{9+1+4+4}{18} = 1$$

$$P\left(\frac{1+y}{x}\right) = \frac{1+2}{3} = 1$$



all Integer



$$X := \{x, y\}$$

In this embedding fx,

$$P(x) = 2, P(y) = 3$$

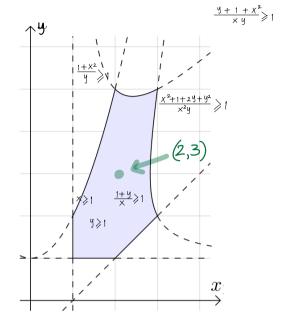
p where $p(x)=2, p(y)=3 \mapsto (2,3) \in \mathbb{R}^2$ (an interior point)

$$P\left(\frac{1+X^2}{4}\right) = \frac{1+4}{3} = \frac{5}{3}$$

$$P\left(\frac{y+1+x^2}{x y}\right) = \frac{3+1+4}{6} = \frac{8}{6} = \frac{4}{3}$$

$$P\left(\frac{x^2+1+2y+y^2}{x^2y}\right) = \frac{4+1+6+9}{12} = \frac{20}{12} = \frac{5}{3}$$

$$P\left(\frac{1+y}{x}\right) = \frac{1+3}{2} = 2$$



$$X := \{x, y\}$$

In this embedding fx,

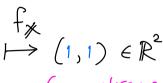
where
$$p(x)=1, p(y)=1$$

$$P\left(\frac{1+X^2}{y}\right) = 2$$

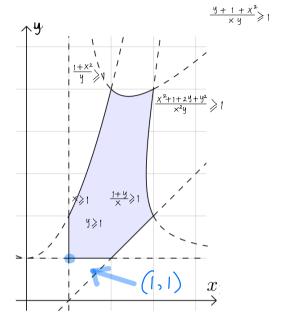
$$P\left(\frac{y+1+x^2}{xy}\right) = 3$$

$$P\left(\frac{x^2+1+2y+y^2}{x^2y}\right)=5$$

$$P\left(\frac{1+y}{x}\right)=2$$



all Integer



Thm A If A is a Dynkin type cluster algebra, the superunitary region $A(R_{\geq 1})$ is a regular CW complex which is cellular homeomorphic to the generalized associahedron.

Subcluster face indexed by subcluster \times is $\{p: A \rightarrow \mathbb{R} \text{ s.t. } p(a) = 1 \text{ iff } a \in X\}$

- K-face \longleftrightarrow a subcluster X of size Y-K
- (r-1)-face \leftarrow a cluster variable \times (facet)
- . 1-face \leftarrow a subcluster % of size r-1 (aka a mutation) (edge)
- O-face (vertex) \longleftrightarrow a cluster $X=\{x_1, x_2, ..., x_r\}$
- Boundary of $\mathcal{A}(R_{\geqslant 1}) = \bigsqcup_{X \text{ nonempty}} \text{ subcluster face indexed by } X$
- Interior of $A(R_{\geqslant 1}) = \{p: A \rightarrow R \text{ where } p(x) > 1 \ \forall \ cl. \ var \ x\}$ indexed by the empty subcluster

Cor $\mathcal{A}(\mathbb{R}_{\geqslant 1})$ is closed and bounded.

Pf The generalized associahedron is a polytope.

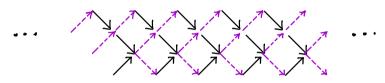
An application of superunitary regions: A uniform proof of a previously open conjecture that there are finitely many positive integral friezes, for each Dynkin type.

Cor If A is a Dynkin type cluster algebra, the set of frieze points is finite. totally positive region

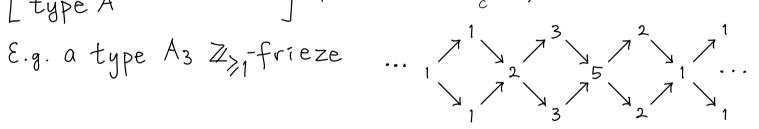
Pf The homeomorphism
$$A(R_{>0}) \cong R_{>0}$$
 The homeomorphism $A(R_{>0}) \cong R_{>0}$ Positive orthant restricts to $A(Z_{>1}) \hookrightarrow Z_{>1}$ pos integral points and $A(Z_{>1}) \hookrightarrow A(R_{>1})$ superunitary region Since $A(R_{>1})$ is bounded, the set of frieze points is finite.

What do we mean by positive integral friezes (in this talk)?

Def Q a (valued) Dynkin quiver, e.g. Q= 1/3 (type A4) Build the "repetition quiver" ZQ



A positive integral frieze is a function $\mathbb{Z}Q \to \mathbb{Z}_{\geqslant 1}$ satisfying ... [Conway-Coxeter 1970s,] for each $\mathbb{Z}_{\geqslant 1}$ we have ad-bc=1



Caldero-Chapoton 2006 and Assem-Reutenaur-Smith 2010, for each $a > b_1 > b_2 > d$, $ad-b_1 ... b_k = 1$ in general

→friezes <> cluster algebras

Fact If Q is Dynkin,
$$A(\mathbb{Z}_{>1}) \stackrel{1-1}{\longleftrightarrow} \mathbb{Z}_{>1}$$
-friezes of Q frieze points

Thm B If Q is Dynkin, there are finitely many $\mathbb{Z}_{\geq 1}$ -friezes of Q.

Pf Earlier we said $A(\mathbb{Z}_{>1})$ is a finite set.

History of proofs, by type

- V Type A Conway-Coxeter 1970s
- V BCD,G₂ Fontaine-Plamondon 2014
- V E6, F4 Cuntz-Plamondon 2018
- ✓ E7, E8 G. Muller 2022 Conjecture for E7, E8 was open until

Techniques

Polygon triangulations

Type D triangulations (once-punctured polygon)

{E6 friezes} <> {2-friezes of height 3}

Uniform proof for all types using compactness of the superunitary region

Conjecture C Any embedding of the superunitary region $A(R_{\geqslant 1})$ is contained in the convex hull of the extreme points.

	Dynkin Type	# of Positive Integral Friezes	# of Unitary Friezes = (# of Clusters) =	
	A_n	$\frac{1}{n+2} \binom{2n+2}{n+1}$	$\frac{1}{n+2} \binom{2n+2}{n+1}$	
	B_n	$\sum_{m=1}^{\sqrt{n+1}} \binom{2n-m^2+1}{n}$	$\binom{2n}{n}$	
	C_n	$\binom{2n}{n}$	$\binom{2n}{n}$	
	D_n	$\sum_{m=1}^{n} d(m) \binom{2n-m-1}{n-m}$	$\frac{3n-2}{n} \binom{2n-2}{n-1}$	
To prove these prove Conjecture, or	E_6	868	833	
· prove Conjecture, or	E_7	Open (conjectured: 4400)	4160	
· prove # of Z>2-valued	E_8	Open (conjectured: 26952)	25080	
	F_4	112	105	
	G_2	9	8	

· prove # of

Z>2-valued

friezes of

type E7 & E8

are 0 and 4

d(m) := the number of divisors of m

Table 1. Counts of positive integral friezes

Thm D There is a frieze point in the interior of $A(R_{\geqslant 1})$ Q is a union of ...

- · type Dn, n not prime
- type E8
- type $B_n, \sqrt{n+1} \in \mathbb{Z}_{\geqslant 2}$
- · type G2 (assuming conjectured # of type E7, E8 positive integral friezes)

E.g. In rank 2, there is a frieze point in the interior of A(R>1) iff Q is of type G2

Quive	r Dynkin type	Superunitary region	Inequalities
0	\circ $A_1 \times A_1$		$x_1 \ge 1$ $2 \ge x_2$ $2 \ge x_1$ $x_2 \ge 1$
0;	\circ A_2		$x_{1} \ge 1$ $x_{1} + 1 \ge x_{2}$ $x_{1} + x_{2} + 1 \ge x_{1}x_{2}$ $x_{2} + 1 \ge x_{1}$ $x_{2} \ge 1$
\circ $(2,1)$	\otimes $B_2 ext{ or } C_2$		$x_1 \ge 1$ $x_1^2 + 1 \ge x_2$ $x_1^2 + x_2 + 1 \ge x_1 x_2$ $x_2^2 + 2x_2 + x_1^2 + 1 \ge x_1^2 x_2$ $x_2 + 1 \ge x_1$ $x_2 \ge 1$
(3, 1)	G_2	3,2)	$x_{1} \ge 1$ $\frac{x_{1}^{3}+1}{x_{2}} \ge 1$ $\frac{x_{1}^{3}+1}{x_{2}x_{1}} \ge 1$ $\frac{x_{1}^{3}+3x_{2}x_{1}^{3}+2x_{1}^{3}+3x_{2}^{2}+3x_{2}+1}{x_{2}^{2}x_{1}^{3}} \ge 1$ $\frac{x_{2}^{3}+3x_{2}^{2}+3x_{2}+x_{1}^{3}+1}{x_{2}x_{1}^{2}} \ge 1$ $\frac{x_{1}^{3}+x_{2}^{2}+2x_{2}+1}{x_{2}x_{1}^{2}} \ge 1$ $\frac{x_{2}+1}{x_{1}} \ge 1$ $x_{2} \ge 1$

THANK YOU

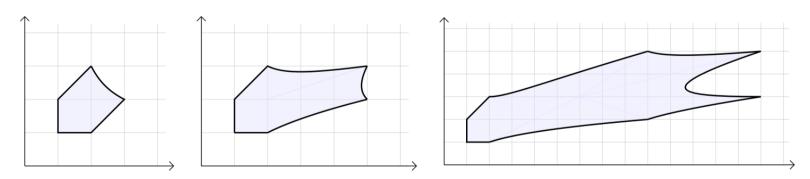


FIGURE 1. The superunitary regions of types A_2 , B_2/C_2 , and G_2 (embedded in $\mathbb{R}^2_{>0}$)