Triangulations \& maximal almost rigid modules over gentle algebras

Emily Gunawan (University of Massachusetts Lowell)
It. w/ Emily Barnard, Raquel Coelho Simões, \& Ralf Schiffler
FD Seminar
Thursday, September 21,2023

Gentle algebras

Def A finite-dimensional algebra $A=\mathbb{K} Q / I$ is gentle if:
(GI) \forall vertex i of Q, \exists at most 2 arrows starting at i \exists at most 2 arrows ending at i

(G2) I is generated by paths of length 2
(G3) \forall arrow a of Q, \exists at most 1 arrow b s.t ba $\notin I$ \exists at most 1 arrow c sit $a c \notin I$
(G4) \forall arrow a of Q, \exists at most 1 arrow b^{\prime} sit $b^{\prime} a \in I$ \exists at most 1 arrow c^{\prime} sit $a c^{\prime} \in I$

Ex $Q=1 \xrightarrow{a} 2 \sum_{c>4}^{b>3} 4$

$$
\begin{aligned}
& Q=1 \xrightarrow{a} 2 \sum_{c>4}^{b>3} \\
& \mathbb{K} Q \text { Not gentle }
\end{aligned}
$$

$$
\begin{aligned}
Q= & 1 \xrightarrow{a} 2 \xrightarrow{c} \vec{c}^{3} \\
& I=\langle a b\rangle
\end{aligned}
$$

$\mathbb{K Q} /$ I is gentle

$$
\begin{aligned}
& Q=3 \alpha_{2}^{d} \frac{c}{a}_{a}^{a}{ }^{4} \\
& I=\langle a b, c a\rangle
\end{aligned}
$$

$\mathbb{K Q} /$ I is also gentle

String modules
A string ω is a walk along the arrows in $Q_{1} \cup \underbrace{Q_{1}^{-1}}_{1}$ $\left\{\right.$ opposite ar row $\left.\alpha^{-1} \mid \alpha \in Q_{1}\right\}$
with - no backtrack $a a^{-1}$ or $a^{-1} a$

- no subwalk v with $v \in I$ or $v^{-1} \in I$ (no going through relations)

Ex

$$
\begin{aligned}
& I=\langle a b\rangle \\
& \text { - } a c \text { is a string, } b^{-1} c \text { is a string, } a b \text { is not a string } \\
& 2 \xrightarrow[c \rightarrow 4]{b \rightarrow 3} \quad 1 \xrightarrow[2]{a_{2}^{---b}+3}
\end{aligned}
$$

- $e_{1}, e_{2}, e_{3}, e_{4}$ are trivial strings
[Butler-Ringel 1987]
If $\mathbb{K Q} / \mathrm{I}$ is a gentle algebra,
indecomposable modules are "string modules" and "band modules"
ω string $\longleftrightarrow M(\omega)$ string module

Recall def $T \in \bmod (A)$ is tilting if
$(T 1)$ For each pair A, B of summand of T,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, then $E \cong B \oplus A$
(T2) T is maximal with respect to (T_{1})
(TB) T has projective dimension at most 1
Rem A tilting T has $\left|Q_{0}\right|$ non-isomorphic summands \# of vertices of Q

Def $A=\mathbb{K} Q /$ I gentle algebra. A basic direct sum $T \in \bmod (A)$ of string modules is maximal almost rigid (mar) if
(M1) For each pair A, B of summands of T, called if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, $\frac{a l \text { most }}{\text { rigid }}$ then $E \cong B \oplus A$ or E is indecomposable

Originally defined for type A $\mathbb{k} Q$ by [Barnard. G. Meghan, Swifter]
(M2) T is maximal with respect to (M1)
Rem (M2) can be replaced with:

$$
\text { "T has }\left|Q_{0}\right|+\left|Q_{1}\right| \text { non-isomorphic summands" }
$$

$$
\text { \# of vertices of } Q \text { \# of arrows of } Q
$$

Rem Question: Why do we restrict to only string modules?

Strings

Answer: there are band modules that satisfy (M1)

Ex: $\mathbb{K} \underset{\lambda}{\underset{\longrightarrow}{\longrightarrow}} \mathbb{K}$ satisfies (M1).

- If $\lambda \neq \lambda^{\prime}$, then $E x t^{1}\left(\mathbb{K} \underset{\lambda}{\underset{\longrightarrow}{\longrightarrow}} \mathbb{K}, \mathbb{k} \underset{\lambda^{\prime}}{\stackrel{1}{\longrightarrow}} \mathbb{k}\right)=0$.
- If we allow bands, we would have infinitely many summands.
[Upper - Plamondon - Schroll 2018] \& [Bur - Coelho Simões 2018] extra marked points *

Tiling or dissection $\left(S, M, P, M^{*}\right)$
S : Surface w/ nonempty ∂S
M : Marked points in ∂S
P : Dissection of (S, M) into tiles $-n-\operatorname{gon}(n \geqslant 2)$ w/ 1 bdry edge as its side

- internal n-gan $(n \geqslant 1)$

M^{*} : Put a point * in each tile - on bdry edge between points of M - in interior of internal disk - $\in M \quad * \in M^{*}$

Rules:
$i \stackrel{a}{a}^{j} \mid b{ }^{k}$ of $P \quad \longleftrightarrow \quad i \xrightarrow{a} j \xrightarrow{b} k(a b \notin I)$

[Opper - Plamondon - Schroll 2018] [Gaur - Coelho Simões 2018] extra marked points *
string modules of $\mathbb{k Q} / \overline{\text { I }} \stackrel{1-1}{\longleftrightarrow}$ permissible $\operatorname{arcs} \gamma$ in S :
(i) endpoints are in M^{*}
(ii) each pair of consecutive crossings of γ and P corresponds to an arrow of Q $\xrightarrow{\gamma}$ (locally cuts up a triangle)

Ex (S, M, P)

$$
\begin{gathered}
Q=1 \xrightarrow{a^{---b}} 2 \xrightarrow[c]{ } 4 \\
I=\langle a b\rangle
\end{gathered}
$$

do not correspond
to an arrow of $Q$$\quad \leftrightarrow$ string $b^{-1} c$ do not correspond
to an arrow of $Q$$\quad \leftrightarrow$ string $b^{-1} c$

- γ is not permissible
- Consecutive crossings $\operatorname{arc} 1$, $\operatorname{arc} 3$

permissible γ permissible γ $\leftrightarrow \operatorname{string~} b^{-1} c \quad \leftrightarrow$ trivial string e_{2}

ThmI (Barnard - Coelho Simões - G.-Schiffler [B.CS.G.S])

$$
\left\{\begin{array}{l}
\operatorname{mar} \operatorname{modules}\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\text { permissible ideal triangulations of }\left(S, M^{*}\right) \\
\text { including boundary edges }
\end{array}\right\}
$$

Ex

$$
Q=1 \xrightarrow{a^{---b}} 2
$$

$$
I=\langle a b\rangle
$$

$$
(S, M, P) \rightleftharpoons\left(S, M, P, M^{*}\right) \longmapsto\left(S, M^{*}\right)
$$

Recall: Each T in $\operatorname{mar}(A)$ has $\left|Q_{0}\right|+\left|Q_{1}\right|$ summand $4+3$

$c \oplus b^{-1} c \oplus \underbrace{e_{4} \oplus b \oplus e_{3} \oplus e_{1} \oplus a c} \in \operatorname{mar}(A)$ are required in every $T \in \operatorname{mar}(A)$

Ex There are exactly three mar modules for

$$
Q=1 \xrightarrow{a^{-}-\frac{b}{\rightarrow}}{ }_{c} \quad I=\langle a b\rangle
$$

 not permissible

"injective" mar

$a \oplus e_{2}$

Th 2 Construct a new gentle algebra
[B.CS.G.S]

$$
\bar{A}:=\frac{\mid k \bar{Q}}{\bar{I}} \text { where } \quad\left|\bar{Q}_{0}\right|=\left|Q_{0}\right|+\left|Q_{1}\right|
$$

Then $T \in \operatorname{mar}(A) \Rightarrow \operatorname{End}_{A}(T) \cong \operatorname{End}_{A}(\bar{T})$ where \bar{T} is tilting in $\bmod (\bar{A})$.

$$
Q=1 \xrightarrow[\rightarrow]{a^{\prime-}} 2 \underset{c}{-b} \quad I=\langle a b\rangle
$$

$$
\bar{Q}=1 \xrightarrow{a_{1}} a \xrightarrow{a_{2}^{\prime}-b_{1}} \operatorname{col}_{4} b_{3} \quad \overline{\mathrm{I}}=\left\langle a_{2} b_{1}\right\rangle
$$

$$
A=\mid k Q / I
$$

3
(4)
(4)

24

234
a
(23)
$T \in \operatorname{mar}(A)$

\bar{T} is a tilting module over \bar{A}

Dissection of \bar{A} (Extra)

(S, M, P)

Add an extra arc in P for each arrow
in Q_{1}

$(\overline{5}, \bar{M}, \vec{p})$
$\frac{1}{A}$
replace with annulus

Dissection of $E_{n d}^{A}(T)$ (Extra)

Q: What is the partial triangulation $G(\tau)$?
Ans/Thm 3: we can construct tiling for $E_{n} d_{A}(T)$ as follows

swap $M \& M^{*}$ in ∂S

Note: No puncture
 by construction of tiling of \bar{A}

is the endomorphism algebra

$$
\operatorname{End}_{A}(T) \cong \operatorname{End}_{A}(\bar{T})
$$

Example (extra)
$(S, M, P) \quad(S, M, P) \quad\left(S, M, P, M^{*}\right) \quad\left(S, M^{*}\right)$

$I=\langle a b, c a\rangle$

An annulus with 3 points on one bdry \& 1 point on the other

Not permissible the crossings w/ p at $\operatorname{arc} 2, \operatorname{arc} 4$ do not to an arrow in Q

permissible

trivial string e_{4}

