Triangulations \& maximal almost rigid modules over gentle algebras

Emily Gunawan (University of Massachusetts Lowell)
It. w/ Emily Barnard, Raquel Coelho Simões, \& Ralf Schiffler
FD Seminar
Thursday, September 21,2023

Gentle algebras

Def A finite-dimensional algebra $A=\mathbb{K} Q / I$ is gentle if:
(GI) \forall vertex i of Q, \exists at most 2 arrows starting at i \exists at most 2 arrows ending at i
(G2) I is generated by paths of length 2
(G3) \forall arrow a of Q, \exists at most 1 arrow b st ba $\notin I$ \exists at most 1 arrow c sit $a c \notin I$
(G4) \forall arrow a of Q, \exists at most 1 arrow b^{\prime} sit $b^{\prime} a \in I$ \exists at most 1 arrow c^{\prime} s.t $a c^{\prime} \in I$

$$
\text { Ex } Q=1 \xrightarrow{a} 2{\underset{c}{~}}_{b_{3}}+4
$$

$$
\begin{aligned}
Q= & 1 \xrightarrow{a} 2 \xrightarrow[c]{c}{ }^{3} \\
& I=\langle a b\rangle
\end{aligned}
$$

$$
\begin{aligned}
& Q=3\left\langle_{d}^{d} 2 \frac{c_{i}^{4}}{a}{ }^{6} 1\right. \\
& I=\langle a b, c a\rangle
\end{aligned}
$$

\square

String modules
A string ω is a walk along the arrows in $Q_{1} \cup Q_{1}^{-1}$ $\left\{\right.$ opposite arrow $\left.\alpha^{-1} \mid \alpha \in Q_{1}\right\}$
with - no backtrack $a a^{-1}$ or $a^{-1} a$

- no subwalk v with $v \in I$ or $v^{-1} \in I$ (no going through relations)

Ex

$$
\begin{aligned}
& Q=1 \xrightarrow{a^{---b}} 2 \xrightarrow[c]{ }+4 \quad \text { ac is } \\
& I=\langle a b\rangle
\end{aligned}
$$

- $a c$ is \qquad) $b^{-1} c$ is \qquad , $a b$ is

$$
1 \xrightarrow{a^{---b}}{ }^{3}
$$

- $e_{1}, e_{2}, e_{3}, e_{4}$ are \qquad
[Butler-Ringel 1987]
If $\mathbb{K Q} /$ I is a gentle algebra,
indecomposable modules are "string modules" and "band modules"

Recall def $T \in \bmod (A)$ is tilting if
(T1) For each pair A, B of summand of T,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, then $E \cong B \oplus A$
(T2) T is maximal with respect to (T1)
(TB) T has projective dimension at most 1
Rem A tilting T has $\left|Q_{0}\right|$ non-isomorphic summands

Def $A=\mathbb{K} Q / I$ gentle algebra. A basic direct sum $T \in \bmod (A)$ of string modules is maximal almost rigid (mar) if
(M1) For each pair A, B of summands of T,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence,
then $E \cong B \oplus A$ or E is indecomposable
(M2) T is maximal with respect to (M1)
Rem (M2) can be replaced with:

Originally defined for type A $\mathbb{k} Q$ by [Barnar deG. Henan. Schiffler]

Rem Question: Why do we restrict to only string modules?

Strings

Answer: there are band modules that satisfy (M1)

Ex: $\mathbb{K} \underset{\lambda}{\underset{\longrightarrow}{\longrightarrow}} \mathbb{K}$ satisfies (M1).

- If $\lambda \neq \lambda^{\prime}$, then $E x t^{1}\left(\mathbb{K} \underset{\lambda}{\underset{\longrightarrow}{\longrightarrow}} \mathbb{K}, \mathbb{k} \underset{\lambda^{\prime}}{\stackrel{1}{\longrightarrow}} \mathbb{k}\right)=0$.
- If we allow bands, we would have infinitely many summands.
[Opper - Plamondon - Schroll 2018] \& [Bur - Coelho Simões 2018] extra marked points *

Tiling or dissection $\left(S, M, P, M^{*}\right)$
S : Surface w/ nonempty ∂S
M : Marked points in ∂S
P : Dissection of (S, M) into tiles $-n-\operatorname{gon}(n \geqslant 2)$ w/ 1 bdry edge as its side

- internal n- gone $(n \geqslant 1)$

M^{*} : Put a point * in each tile

Rules:

[Upper - Plamondon - Schroll 2018] \& [Bur - Coelho Simões 2018] extra marked points *
string modules of $\mathbb{k Q} / \mathrm{I} \stackrel{1-1}{\longleftrightarrow}$ permissible $\operatorname{arcs} \gamma$ in S :
(i) endpoints are in M^{*}
(ii) each pair of consecutive crossings of γ and P corresponds to an arrow of Q

Ex $\quad(S, M, P)$

$$
\begin{gathered}
Q=1 \xrightarrow{a^{-}-\frac{-b}{\rightarrow}} 3 \\
I=\langle a b\rangle
\end{gathered}
$$

Th $($ Barnard - Coelho Simões - G.-Schiffler [B.CS.G.S])

$$
\left\{\begin{array}{l}
\operatorname{mar} \operatorname{modules}\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\text { permissible ideal triangulations of }\left(S, M^{*}\right) \\
\text { including boundary edges }
\end{array}\right\}
$$

Ex

$$
Q=1 \xrightarrow{a^{---b}} 2
$$

$$
I=\langle a b\rangle
$$

$(S, M, P) \rightleftharpoons\left(S, M, P, M^{*}\right) \rightleftharpoons\left(S, M^{*}\right)$

Recall: Each T in $\operatorname{mar}(A)$ has $\left|Q_{0}\right|+\left|Q_{1}\right|$ summand

$c \oplus b^{-1} c \oplus e_{4} \oplus b \oplus e_{3} \oplus e_{1} \oplus a c \in \operatorname{mar}(A)$

Ex There are exactly three mar modules for

$$
Q=1 \xrightarrow{a^{\prime}} 2 \underset{c}{-b} 4=\langle a b\rangle
$$

 not permissible

"injective" mar

$a \oplus e_{2}$

Th 2 Construct a new gentle algebra
[B.CS.G.S]

$$
\bar{A}:=\frac{k \bar{Q}}{\bar{I}} \text { where } \quad\left|\bar{Q}_{0}\right|=\left|Q_{0}\right|+\left|Q_{1}\right|
$$

Then $T \in \operatorname{mar}(A) \Rightarrow \operatorname{End}_{A}(T) \cong \operatorname{End}_{\bar{A}}(\bar{T})$ where \bar{T} is tilting in $\bmod (\bar{A})$.

$$
Q=1 \xrightarrow[\rightarrow]{a^{\prime-}} \underset{c}{-b} 4=\langle a b\rangle
$$

$$
\bar{Q}=1 \xrightarrow{a_{1}} a \xrightarrow{a_{2}^{\prime}-b_{1}} \operatorname{col}_{4} b_{3} \quad \overline{\mathrm{I}}=\left\langle a_{2} b_{1}\right\rangle
$$

$$
A=\mid k Q / I
$$

3
(4)
(4)

$T \in \operatorname{mar}(A)$

\bar{T} is a tilting module over \bar{A}
$\operatorname{Thm} 2^{\operatorname{End}_{A}}(\underset{T}{\dagger}) \cong \operatorname{End}_{A}\left(\frac{\downarrow}{T}\right)$

Dissection of \bar{A} (Extra)

(S, M, P)

Add an extra arc in P for each arrow
in Q_{1}

$(\overline{5}, \bar{M}, \vec{p})$
$\frac{1}{A}$
replace with annulus

Dissection of $E_{A}(T)$ (Extra)

Q: What is the partial triangulation $G(\tau)$?
Ans/Thm 3: we can construct tiling for $E_{n} d_{A}(T)$ as follows

swap $M \& M^{*}$ in ∂S

Note: No puncture
 by construction of tiling of \bar{A}

is the endomorphism algebra

$$
\operatorname{End}_{A}(T) \cong \operatorname{End}_{A}(\bar{T})
$$

Example (extra)
$(S, M, P) \quad(S, M, P) \quad\left(S, M, P, M^{*}\right) \quad\left(S, M^{*}\right)$

$I=\langle a b, c a\rangle$

An annulus with 3 points on one bdry \& 1 point on the other

Not permissible the crossings w/ p at $\operatorname{arc} 2, \operatorname{arc} 4$ do not to an arrow in Q

permissible

trivial string e_{4}

