# From permutations to waves, triangulations, and representations

Emily Gunawan, University of Oklahoma

St. John's University Mathematics and Computer Science Wednesday, March 15, 2023

#### Permutations

Let  $S_n$  denote the set of permutations on the numbers  $\{1,\ldots,n\}$ .

We will represent permutations in two ways,

ightharpoonup in two-line notation, as

$$\begin{pmatrix} 1 & 2 & \dots & n \\ w(1) & w(2) & \dots & w(n) \end{pmatrix}$$
, and

▶ in one-line notation, as  $w = w(1)w(2) \cdots w(n) \in S_n$ .

#### Example

A permutation in  $S_5$ 

- $\blacktriangleright$  in two-line notation:  $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{pmatrix}$ , and
- ▶ in one-line notation: 21435

### Part I: Box-ball systems and tableaux

Emily Gunawan, University of Oklahoma, joint with

- B. Drucker, E. Garcia, A. Rumbolt, R. Silver (UConn REU 2020)
  M. Cofie, O. Fugikawa, M. Stewart, D. Zeng (SUMRY 2021)
- S. Hong, M. Li, R. Okonogi-Neth, M. Sapronov, D. Stevanovich, H. Weingord (SUMRY 2022)

St. John's University
Mathematics and Computer Science
Wednesday, March 15, 2023

# Solitary waves (solitons)

#### Scott Russell's first encounter (August 1834)

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped.

[The mass of water in the channel] rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed.

I followed it on horseback, ... and after a chase of one or two miles I lost it in the windings of the channel."



Soliton on the Scott Russell Aqueduct on the Union Canal (July 1995)

 $({\rm ma.hw.ac.uk/solitons/press.html})$ 

Two soliton animation: www.desmos.com/calculator/86loplpajr

## (Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball configurations.

- At each configuration, balls are labeled by numbers 1 through n in an infinite strip of boxes.
- ▶ Each box can fit at most one ball.

#### Example

A possible box-ball configuration:



## Box-ball move (from t = 0 to t = 1)

Balls take turns jumping to the first empty box to the right, starting with the smallest-numbered ball.

| t = 0 | <br>4 | 5 | 2 | 3 | 6 | 1 |   |   |   | $] \dots$ |
|-------|-------|---|---|---|---|---|---|---|---|-----------|
|       | <br>4 | 5 | 2 | 3 | 6 |   | 1 |   |   |           |
|       | <br>4 | 5 |   | 3 | 6 | 2 | 1 |   |   | · · ·     |
|       | <br>4 | 5 |   |   | 6 | 2 | 1 | 3 |   | · · ·     |
|       |       | 5 | 4 |   | 6 | 2 | 1 | 3 |   |           |
|       |       |   | 4 | 5 | 6 | 2 | 1 | 3 |   | · · ·     |
| t = 1 |       |   | 4 | 5 |   | 2 | 1 | 3 | 6 |           |

# Box-ball moves (t = 0 through t = 5)

| $t = 0 \cdot \cdot \cdot \boxed{4}$ | 5 | 2 | 3 | 6 | 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | ] |
|-------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| t=1 ···                             |   | 4 | 5 |   | 2 | 1 | 3 | 6 |   |   |   |   |   |   |   |   |   |   |   |   | ] |
| $t=2 \cdots$                        |   |   |   | 4 | 5 | 2 |   |   | 1 | 3 | 6 |   |   |   |   |   |   |   |   |   | ] |
| $t=3 \cdots$                        |   |   |   |   |   | 4 | 2 | 5 |   |   |   | 1 | 3 | 6 |   |   |   |   |   |   | ] |
| $t = 4 \cdot \cdot \cdot$           |   |   |   |   |   |   | 4 |   | 2 | 5 |   |   |   |   | 1 | 3 | 6 |   |   |   |   |
| $t = 5 \cdots$                      |   |   |   |   |   |   |   | 4 |   |   | 2 | 5 |   |   |   |   |   | 1 | 3 | 6 | ] |

## Solitons and steady state

#### Definition

A *soliton* of a box-ball system is an increasing run of balls that moves at a speed equal to its length and is preserved by all future box-ball moves.

#### Example

The strings 4, 25, and 136 are solitons:



After a finite number of box-ball moves, the system reaches a *steady* state where:

- ▶ each ball belongs to one soliton
- ▶ the lengths of the solitons are weakly decreasing from right to left

## Question (steady-state time)

The time when a permutation w first reaches steady state is called the *steady-state time* of w.

► Find a formula to compute the steady-state time of a permutation, without needing to run box-ball moves.

## Tableaux (English notation)

#### Definition

- A tableau is an arrangement of numbers  $\{1, 2, ..., n\}$  into rows whose lengths are weakly decreasing.
- ▶ A tableau is *standard* if its rows and columns are increasing.

#### Example

Standard Tableaux:

| 1 | 2 | 4 |
|---|---|---|
| 3 | 5 |   |
| 6 | 7 |   |

| 1 | 3 | 6 |
|---|---|---|
| 2 | 5 |   |
| 4 |   |   |

| 1 | 3 | 4 |
|---|---|---|
| 2 | 7 |   |
| 5 | 8 |   |
| 6 |   |   |

Nonstandard Tableau:

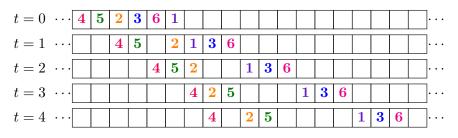
| 1 | 2 | 3 |
|---|---|---|
| 5 | 6 | 7 |
| 4 |   |   |

## Soliton decomposition

#### Definition

To construct soliton decomposition SD(w) of w, start with the one-line notation of w, and run box-ball moves until we reach a steady state; the 1st row of SD(w) is the rightmost soliton, the 2nd row of SD(w) is the next rightmost soliton, and so on.

### Example



## RSK bijection

The classical Robinson–Schensted–Knuth (RSK) insertion algorithm is a bijection

$$w \mapsto (P(w), Q(w))$$

from  $S_n$  onto pairs of size-n standard tableaux of equal shape.

#### Example

Let w = 452361. Then

$$P(w) = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 5 \end{bmatrix} \quad \text{and} \quad Q(w) = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix}.$$

## RSK bijection example

Let w = 452361.

#### Insertion and bumping rule for P

- ▶ Insert x into the first row of P.
- ▶ If x is larger than every element in the first row, add x to the end of the first row.
- ▶ If not, replace the smallest number larger than x in row 1 with x. Insert this number into the row below following the same rules.

#### Recording rule for Q

For Q, insert  $1, \ldots, n$  in order so that the shape of Q at each step matches the shape of P.

## Q(w) determines the box-ball dynamics of w

#### Theorem (SUMRY 2021)

If Q(v) = Q(w), then

- $\triangleright$  v and w first reach steady state at the same time, and
- $\blacktriangleright$  the soliton decompositions of v and w have the same shape

Example

$$v = 21435$$
 and  $w = 31425$ 

$$Q(v) = Q(w) = \boxed{\begin{array}{c|c} 1 & 3 & 5 \\ \hline 2 & 4 \end{array}}$$

Both v and w have steady-state time t = 1

$$SD(v) = \begin{bmatrix} 1 & 3 & 5 \\ 4 & & \\ 2 & & \end{bmatrix} SD(w) = \begin{bmatrix} 1 & 2 & 5 \\ 4 & & \\ 3 & & \end{bmatrix}$$

## Questions (steady-state time)

Two permutations are said to be *Q*-equivalent if they have the same *Q*-tableau.

- ▶ Given a Q-tableau, find a formula to compute the steady-state time for all permutations in this Q-tableau equivalence class.
- Find an upper bound for steady-state times of all permutations in  $S_n$ .

## L-shaped soliton decompositions

#### Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition

1 ...

then its steady-state time is either t=0 or t=1.

#### Remark

Such permutations include "noncrossing involutions" and "column words" of standard tableaux.

### Example

Both v = 21435 and w = 31425 have steady-state time t = 1.

$$SD(v) = \begin{bmatrix} 1 & 3 & 5 \\ 4 & & \\ 2 & & \end{bmatrix} SD(w) = \begin{bmatrix} 1 & 2 & 5 \\ 4 & & \\ 3 & & \end{bmatrix}$$

$$v = (12)(34)$$
 and  $w = 31425$  is the column word of  $\begin{vmatrix} 1 & 2 & 5 \\ \hline 3 & 4 \end{vmatrix}$ 

## Maximum steady-state time

#### Theorem (UConn 2020)

If 
$$n \ge 5$$
 and 
$$Q(w) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdots \begin{bmatrix} n-2 & n-1 \\ n & n \end{bmatrix}$$

then the steady-state time of w is n-3.

#### Conjecture

For  $n \ge 4$ , the steady-state time of a permutation in  $S_n$  is at most n-3.

## A permutation with steady-state time n-3

Let  $w = 452361 \in S_6$ . Then  $Q(w) = \begin{bmatrix} 1 & 2 & 5 \\ \hline 3 & 4 \end{bmatrix}$  and the steady-state time of w is 3 = n - 3.

| t = 0 | <br>4 | 5 | 2 | 3 | 6 | 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|-------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| t = 1 |       |   | 4 | 5 |   | 2 | 1 | 3 | 6 |   |   |   |   |   |   |   |   |   |   |   |   |  |
| t = 2 |       |   |   |   | 4 | 5 | 2 |   |   | 1 | 3 | 6 |   |   |   |   |   |   |   |   |   |  |
| t = 3 |       |   |   |   |   |   | 4 | 2 | 5 |   |   |   | 1 | 3 | 6 |   |   |   |   |   |   |  |
| t = 4 |       |   |   |   |   |   |   | 4 |   | 2 | 5 |   |   |   |   | 1 | 3 | 6 |   |   |   |  |
| t = 5 |       |   |   |   |   |   |   |   | 4 |   |   | 2 | 5 |   |   |   |   |   | 1 | 3 | 6 |  |

## Questions (soliton decomposition)

- ▶ When is the soliton decomposition SD a standard tableau?
- ► Characterize the permutations with the same soliton decompositions

## When is SD(w) a standard tableau?

#### Example

$$SD(452361) = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 5 \\ 4 \end{bmatrix} SD(21435) = \begin{bmatrix} 1 & 3 & 5 \\ 4 \\ 2 \end{bmatrix} SD(31425) = \begin{bmatrix} 1 & 2 & 5 \\ 4 \\ 3 \end{bmatrix}$$

#### Theorem (UConn 2020 + D. Grinberg)

Given a permutation w, the following are equivalent:

- 1. SD(w) is standard
- 2. SD(w) = P(w)
- 3. the shape of SD(w) is equal to the shape of P(w)

#### Definition (good permutations)

We say that a permutation w is good if the tableau SD(w) is standard.

## Q(w) determines whether w is good

#### Proposition

Given a standard tableau T, either

All 
$$w$$
 such that  $Q(w) = T$  are good,

or

All w such that Q(w) = T are not good.

#### Definition (good tableaux)

A standard tableau T is good if T = Q(w) and w is good.

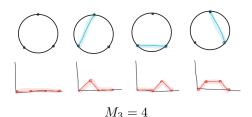
▶ Question: How many good tableaux are there?

## Answer: Good tableaux are new Motzkin objects!

#### Theorem (SUMRY 2022)

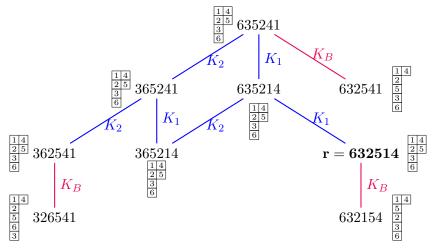
The good standard tableaux,  $\{Q(w) \mid w \in S_n \text{ and } SD(w) \text{ is standard}\}$ , are counted by the Motzkin numbers:

$$M_0 = 1,$$
  $M_n = M_{n-1} + \sum_{i=0}^{n-2} M_i M_{n-2-i}$ 



The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.

# Further question: Characterize permutations with the same soliton decomposition



Permutations connected by *Knuth moves* to  $\mathbf{r} = \mathbf{632514}$  and their soliton decompositions

## The end of part I

| $\overline{Y}$ | 0 | U | ! |
|----------------|---|---|---|
| A              | N | K |   |
| T              | H |   |   |



## Part II: Triangulations and quiver representations

Emily Gunawan, University of Oklahoma, joint with E. Barnard, R. Coelho Simões, E. Meehan, and R. Schiffler

> St. John's University Mathematics and Computer Science Wednesday, March 15, 2023

# Inspiration: $\eta$ map (Björner–Wachs 1997, Reading 2004)

A surjection  $\eta: S_3 \to \{ \text{ triangulations of } 0 \xleftarrow{1 \quad 3} 4 \}$ 

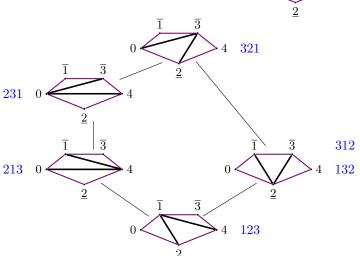
 $\overline{1}$ 

0 · · · 4

2

# Inspiration: $\eta$ map (Björner–Wachs 1997, Reading 2004)

A surjection  $\eta: S_3 \twoheadrightarrow \{ \text{ triangulations of } 0 \longleftrightarrow 4 \}$ 



## Inspiration: $\eta$ map (Björner-Wachs 1997, Reading 2004)

In general, we have a surjection

$$\eta^Q: S_{n+1} \to \{\text{triangulations of } P(Q)\}, \text{ where }$$

Q is a type  $A_{n+2}$  quiver, i.e. an orientation of the Dynkin diagram

$$v_1 - v_2 - \cdots - v_{n+2}$$
.

P(Q) is the (n+3)-gon with vertices  $0,1,2,\ldots,n+2$  from left to right

$$0 \left\langle \begin{array}{c} \textbf{upper-barred} \ \overline{k} \\ \textbf{lower-barred} \ \underline{k} \end{array} \right\rangle n + 2 \quad \text{via the rule} \quad \begin{array}{c} v_k & v_{k+1} \\ \hline k & \sqrt{\underline{k}} \\ v_{k+1} & v_k \end{array}$$

Ex: 
$$P(Q) = 0$$

$$\underbrace{\overline{1} \quad \overline{3}}_{\underline{2}} \quad 4 \quad \text{for} \quad Q = \underbrace{v_1}_{v_2} \underbrace{v_3}_{\underline{2}} \underbrace{v_3}_{v_4}$$

## Quiver representations

Let 
$$Q$$
 be a quiver, e.g.  $Q = v_1 \longrightarrow v_2 \longleftarrow v_3 \longrightarrow v_4$ 

A representation M of a quiver Q is assigning

- ightharpoonup a  $\mathbb{C}$ -vector space to each vertex of Q
- ightharpoonup a  $\mathbb{C}$ -linear map to each arrow of Q

Ex: 
$$M = \begin{bmatrix} \mathbb{C}^2 & \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} & \mathbb{C}$$

#### Proposition (Gabriel 1972)

If Q is a Dynkin quiver of type  $A_{n+2}$ , the "indecomposable" representations of Q are the representations M(i,j) with  $\mathbb C$  on each of  $v_i, v_{i+1}, \ldots, v_j$ , and the identity map on each arrow (with  $1 \leq i \leq j \leq n+2$ ).

Ex: 
$$M(2,4) = \frac{3}{24} = 0$$
 [1] [1]  $\mathbb{C}$ 

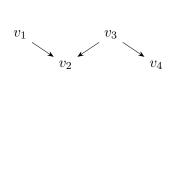
## The Auslander–Reiten quiver

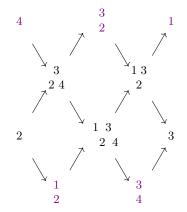
The Auslander–Reiten quiver of Q is a directed graph  $\Gamma_Q$  with

- $\triangleright$  vertices: indecomposable representations of Q
- ▶ arrows: "irreducible" morphisms

Ex: Quiver Q

The Auslander–Reiten quiver of Q

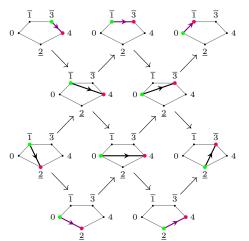


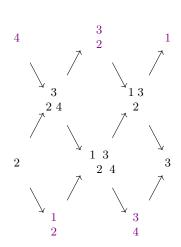


## A model for the AR quiver inspired by the $\eta$ map

Theorem (Barnard-G.-Meehan-Schiffler 2019)

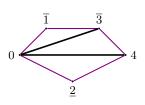
Line segment from i to  $j \longleftrightarrow$  indecomposable representation M(i+1,j)Counterclockwise pivot  $\longleftrightarrow$  irreducible morphism

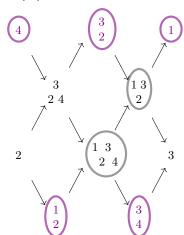




## Question

▶ Triangulations of  $P(Q) \longleftrightarrow ??$ 





## A new class of quiver representations

#### Definition (BGMS 19)

Let Q be a type A quiver. A representation T of Q is maximal almost rigid (mar) if

- (1) T has (# of vertices) + (# of arrows) non-isomorphic summands
- (2) T is almost rigid, that is, for each pair A, B of indecomposable summands of T, if  $0 \to B \to E \to A \to 0$  is a short exact sequence then  $E \cong A \oplus B$  or E is indecomposable.

#### Remark

Condition (1) can be replaced with "T is maximal with respect to (2)".

## A new class of Catalan objects

#### Theorem (BGMS 19)

Let Q be a type A quiver. Then

 ${Triangulations of } P(Q)$   $\longleftrightarrow$   ${mar representations of } Q$ 

#### Definition

The *n*-th Catalan number is the number of triangulations of the (n+2)-gon.

#### Corollary

The mar representations are counted by the Catalan numbers.

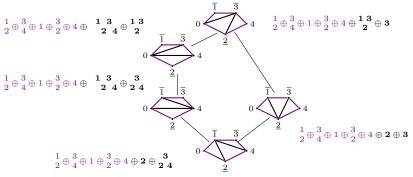
Further work (with E. Barnard, R. Coelho Simões, and R. Schiffler):

Tell similar stories about mar objects in the setting of "gentle quivers with relations", "string quivers with relations", and more.

## Partial order on the mar representations

#### Theorem (BGMS 19)

We put a natural Cambrian poset structure on the mar representations.



Further work (with E. Barnard, R. Coelho Simões, and R. Schiffler):

Tell similar stories about mar objects in the setting of "gentle quivers with relations", "string quivers with relations", and more.

