Inspiration: The η map (Björner and Wachs 1997, Reading 2004)

A representation M of a quiver Q is assigning

- a \mathbb{C} -vector space to each vertex of Q
- a \mathbb{C} -linear map to each arrow of Q

Ex:
$$M = \mathbb{C}^2 \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \mathbb{C} \begin{bmatrix} 1 \end{bmatrix}$$

Proposition [Gab72]: If Q is a Dynkin quiver of type A_{n+2} , the "indecomposable" representations of Q are the representations M(i, j) with \mathbb{C} on each of $v_i, v_{i+1}, \ldots, v_j$, and the identity map on each arrow (with $1 \le i \le j \le n+2$).

Ex:
$$M(2,4) = \frac{3}{24} = \begin{bmatrix} 0 & [1] & [1] \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\$$

The Auslander–Reiten quiver

The Auslander–Reiten quiver of Q is a directed graph Γ_Q with

- vertices: indecomposable representations of Q
- arrows: "irreducible" morphisms

Ex: The Auslander–Reiten quiver of the type A_4 quiver Q above is

Triangulations and maximal almost rigid representations

Emily Gunawan

University of Oklahoma

 \mathcal{L}

A model for the Auslander–Reiten quiver inspired by the η map

Theorem 1 (Barnard–G.–Meehan–Schiffler [BGMS23]) Line segment from i to j, where $0 \le i < j \le n+1 \leftrightarrow$ indecomposable representation M(i+1,j)Moving one endpoint counterclockwise \leftrightarrow irreducible morphism

Question: What is the representation corresponding to a triangulation?

Classical Definition: Let Q be a type A quiver. A representation T of Q is maximal rigid if

- (1) T has (# of vertices) non-isomorphic summands
- (2) T is rigid, that is, for each pair A, B of indecomposable summands of T, if $0 \to B \to E \to A \to 0$ is a short exact sequence then $E \cong A \oplus B$.

Definition 2 [BGMS23]: Let Q be a type A quiver. A representation T of Q is maximal almost rigid (mar) if

- (1) T has (# of vertices) + (# of arrows) non-isomorphic summands
- (2) T is almost rigid, that is, for each pair A, B of indecomposable summands of T, if $0 \to B \to E \to A \to 0$ is a short exact sequence then $E \cong A \oplus B$ or E is indecomposable.

Remark: Condition (1) can be replaced with "T is maximal with respect to (2)".

A new class of Catalan objects

Theorem 3 [BGMS23]: Let Q be a type A quiver. Then {Triangulations of P(Q)} \longleftrightarrow {mar representations of Q}

The *n*-th Catalan number is the number of triangulations of the (n + 2)-gon. **Corollary:** The mar representations are counted by the Catalan numbers. ③

Partial order on the mar representations

We define a partial order on the MAR modules by the cover relation $T_1 < T_2$ iff they differ by exactly one indecomposable summand $M_1 \sim M_2$, and there is a morphism from M_1 to M_2 .

Theorem 4 [BGMS23]: The Hasse diagram of this poset is equal to the oriented exchange graph of a smaller type A cluster algebra, and this poset is isomorphic to a Tamari or Cambrian lattice.

 $\frac{1}{2} \oplus \frac{3}{4} \oplus 1 \oplus \frac{3}{2} \oplus 4 \oplus \mathbf{2} \oplus \frac{\mathbf{3}}{\mathbf{2} \mathbf{4}}$

A new class of quiver representations

- A quiver Q with relations R is called gentle if
- ending at k
- (G2) R is a set of paths of length 2
- one arrow c such that $ac \notin R$
- one arrow c' such that $ac' \in R$
- (G5) If Q has an oriented cycle, then it must go through a path in R

The auiver

A representation of a gentle quiver with relations (Q, R) is assigning

- a \mathbb{C} -vector space to each vertex of Q
- zero map.

Ex: The Auslander–Reiten quiver of the gentle (Q, R) above is

The Auslander–Reiten quiver of a gentle quiver with relations (Q, R) is modeled by a tiled surface [BC21]. Instead of line segments of a polygon, the indecomposable representations correspond to "permissible arcs" of a marked surface.

Theorem 5 (Barnard-Coelho Simões-G.-Schiffler [BCGS]): Let (Q, R) be a gentle quiver with relations. Then

{"Permissible ideal" triangulations of a marked surface} \leftarrow {mar representations of (Q, R)}

We define an oriented flip graph of these mar representations which we conjecture to be connected and acyclic in general.

Ex: the mar representations of the gentle (Q, R) above form a chain poset.

[BC21]	Karin Baur and Raquel A geometric model for <i>Int. Math. Res. Not. IMR</i>
[BCGS]	Emily Barnard, Raquel (Triangulations and max In preparation.
[BGMS23]	Emily Barnard, Emily G Cambrian combinatoric Adv. in Appl. Math, 143
[Gab72]	Peter Gabriel. Unzerlegbare Darstellu <i>Manuscripta Math.</i> , 6:72
[Rea06]	Nathan Reading. Cambrian lattices. <i>Adv. Math.</i> , 205(2):313

Gentle bound quivers

(G1) For each vertex k of Q, there are at most two arrows starting at k and at most two arrows

(G3) For each arrow a of Q, there are at most one arrow b such that $ba \notin R$, and there are at most

(G4) For each arrow a of Q, there are at most one arrow b' such that $b'a \in R$, and there are at most

$$a \rightarrow 2 \xrightarrow{b} b$$
 bound by the relation $ab = 0$ is gentle.

• a \mathbb{C} -linear map to each arrow of Q such that the composition of maps along a path in R is the

$$3 \oplus 4 \oplus \frac{2}{3} \oplus \frac{1}{2} \oplus 1 \oplus 2 \oplus \frac{1}{2}$$
$$3 \oplus 4 \oplus \frac{2}{3} \oplus \frac{1}{2} \oplus 1 \oplus \frac{2}{4} \oplus 2$$
$$3 \oplus 4 \oplus \frac{2}{3} \oplus \frac{1}{2} \oplus 1 \oplus \frac{2}{4} \oplus 2$$
$$3 \oplus 4 \oplus \frac{2}{3} \oplus \frac{1}{2} \oplus 1 \oplus \frac{2}{4} \oplus \frac{2}{34}$$

References

Coelho Simões.

⁻ the module category of a gentle algebra. RN, (15):11357-11392, 2021.

Coelho Simões, Emily Gunawan, and Ralf Schiffler. ximal almost rigid representations.

Sunawan, Emily Meehan, and Ralf Schiffler. cs on quiver representations (type A). :102428, 2023.

ungen. I '1-103; correction, ibid. 6 (1972), 309, 1972.

3-353, 2006.