Triangulations and maximal almost rigid representations

Emily Gunawan

University of Oklahoma
Q

Inspiration: The η map (Björner and Wachs 1997, Reading 2004)

$$
\begin{aligned}
& \text { Ex: Consider the surjection } \\
& \qquad \eta: S_{3} \rightarrow\{\text { triangulations of } 0 \overbrace{\underline{2}}^{\overline{1}} 4\}
\end{aligned}
$$

Draw paths

Definition [Rea06]: In general, we have a surjection
$\eta^{Q}: S_{n+1} \rightarrow\{$ triangulations of $P(Q)\}$
where Q is a type A_{n+2} quiver, that is, an orientation of the type A_{n+2} Dynkin diagram

$$
v_{1}-v_{2}-\cdots-v_{n+2}
$$

Quiver representations
A representation M of a quiver Q is assigning

- a \mathbb{C}-vector space to each vertex of Q
- a \mathbb{C}-linear map to each arrow of Q

Ex: $\quad M=$
\mathbb{C}^{3}
${ }_{\mathbb{C}}$
Proposition [Gab72]: If Q is a Dynkin quiver of type A_{n+2}, the "indecomposable" representations of Q are the representations $M(i, j)$ with \mathbb{C} on each of $v_{i}, v_{i+1}, \ldots, v_{j}$, and the identity map on each arrow (with $1 \leq i \leq j \leq n+2$).

The Auslander-Reiten quiver

The Auslander-Reiten quiver of Q is a directed graph Γ_{Q} with

- vertices: indecomposable representations of Q
- arrows: "irreducible" morphisms

Ex: The Auslander-Reiten quiver of the type A_{4} quiver Q above is

A model for the Auslander-Reiten quiver inspired by the η map
Theorem 1 (Barnard-G.-Meehan-Schiffler [BGMS23]
Line segment from i to j, where $0 \leq i<j \leq n+1 \longleftrightarrow$ indecomposable representation $M(i+1, j)$ Moving one endpoint counterclockwise \longleftrightarrow irreducible morphism

Question: What is the representation corresponding to a triangulation?
A new class of quiver representations

Classical Definition: Let Q be a type A quiver. A representation T of Q is maximal rigid if

1) T has (\# of vertices) non-isomorphic summands
(2) T is rigid, that is, for each pair A, B of indecomposable summands of T, if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence then $E \cong A \oplus B$.
Definition 2 [BGMS23]: Let Q be a type A quiver. A representation T of Q is maximal almost rigid (mar) if
(1) T has (\# of vertices) + (\# of arrows) non-isomorphic summands
2) T is almost rigid, that is, for each pair A, B of indecomposable summands of T, if
$0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence then $E \cong A \oplus B$ or E is indecomposable.
Remark: Condition (1) can be replaced with " T is maximal with respect to (2)"

A new class of Catalan object

Theorem 3 [BGMS23]: Let Q be a type A quiver. Then

$$
\{\text { Triangulations of } P(Q)\} \longleftrightarrow\{\text { mar representations of } Q\}
$$

The n-th Catalan number is the number of triangulations of the $(n+2)$-gon Corollary: The mar representations are counted by the Catalan numbers. ©

Partial order on the mar representations

We define a partial order on the MAR modules by the cover relation $T_{1}<T_{2}$ iff they differ by exactly one indecomposable summand $M_{1} \sim M_{2}$, and there is a morphism from M_{1} to M_{2}. Theorem 4 [BGMS23]: The Hasse diagram of this poset is equal to the oriented exchange graph of a smaller type A cluster algebra, and this poset is isomorphic to a Tamari or Cambrian lattice.

Gentle bound quivers

A quiver Q with relations R is called gentle if
G1) For each vertex k of Q, there are at most two arrows starting at k and at most two arrows ending at k
G2) R is a set of paths of length 2
G3) For each arrow a of Q, there are at most one arrow b such that $b a \notin R$, and there are at most one arrow c such that $a c \notin R$
G4) For each arrow a of Q, there
G5) If Q has an oriented cycle, then it must go through a path in R

A representation of a gentle quiver with relations (Q, R) is assigning

- a \mathbb{C}-vector space to each vertex of Q
a C-linear man to each arrow of Q such that the composition of maps along a path in R is the zero map.

Ex. The Auslander-Reiten quiver of the gentle (Q, R) above is

Reiten quiver of a gentle quiver with relations (Q, R) is modeled by a tiled Surface [BC21]. Instead of line segments of a polygon, the indecomposable representations correspond to "permissible arcs" of a marked surface.
Theorem 5 (Barnard-Coelho Simões-G.-Schiffler [BCGS]): Let (Q, R) be a gentle quiver with elations. Then
$\{$ "Permissible ideal" triangulations of a marked surface $\} \longleftarrow\{$ mar representations of $(Q, R)\}$
We define an oriented flip graph of these mar representations which we conjecture to be connected and acyclic in genera.

Ex: the mar representations of the gentle (Q, R) above form a chain poset.

$$
\begin{aligned}
& 3 \oplus 4 \oplus \underset{3}{2} \stackrel{1}{2} \underset{4}{\oplus} \oplus \oplus 2 \oplus{ }_{2}^{1} \\
& 3 \oplus 4 \oplus{ }_{3}^{2}{ }_{4}^{\underset{2}{2} \oplus 1} \oplus_{4}^{2} \oplus 2 \\
& 3 \oplus 4 \oplus{ }_{3}^{2} \stackrel{1}{2} \oplus \underset{4}{\oplus} \oplus_{4}^{2} \oplus{ }_{34}^{2}
\end{aligned}
$$

References
[BC21] Karin Baur and Raquel Coelho Simões.
A geometric model for the module category of a gentle algebra. nt. Math. Res. Not. IMRN, (15):11357-11392, 2021.
[BCGS] Emily Barnard, Raquel Coelho Simões, Emily Gunawan, and Ralf Schiffler. riangulations and maximal almost rigid representations. n preparation.
[BGMS23] Emily Barnard, Emily Gunawan, Emily Meehan, and Ralf Schiffler. Cambrian combinatorics on quiver representations (type A)
[Gab72] Peter Gabriel. Une lag Darstellungen. .

Rea06] Nathan Reading.
Adv. Math., 205(2):313-353, 2006

