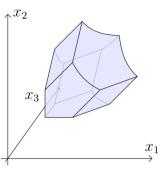


Superunitary regions, generalized associahedra, and

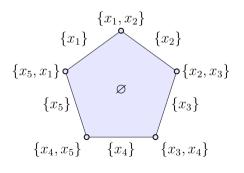


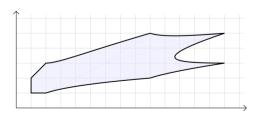
friezes of Dynkin type cluster algebras

Emily Gunawan (University of Oklahoma) Jt. wy Greg Muller

MSRI (SLMath) Special Session on Summer Research in Mathematics (SRiM): Cluster Algebras and Related Topics

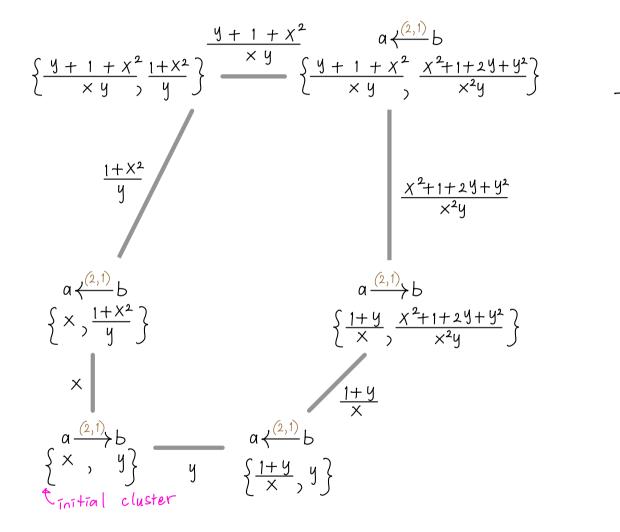
> JMM 2023 Boston Saturday, January 7





E.g. Type
$$C_2 \bigtriangleup : a \xrightarrow{(2,1)} b$$

Choose an orientation of Δ to get a "valued quiver": $Q = a \xrightarrow{(2,1)} b$ $1 \in X, Y$ initial (valued) guiver



The six cluster variables:

• X

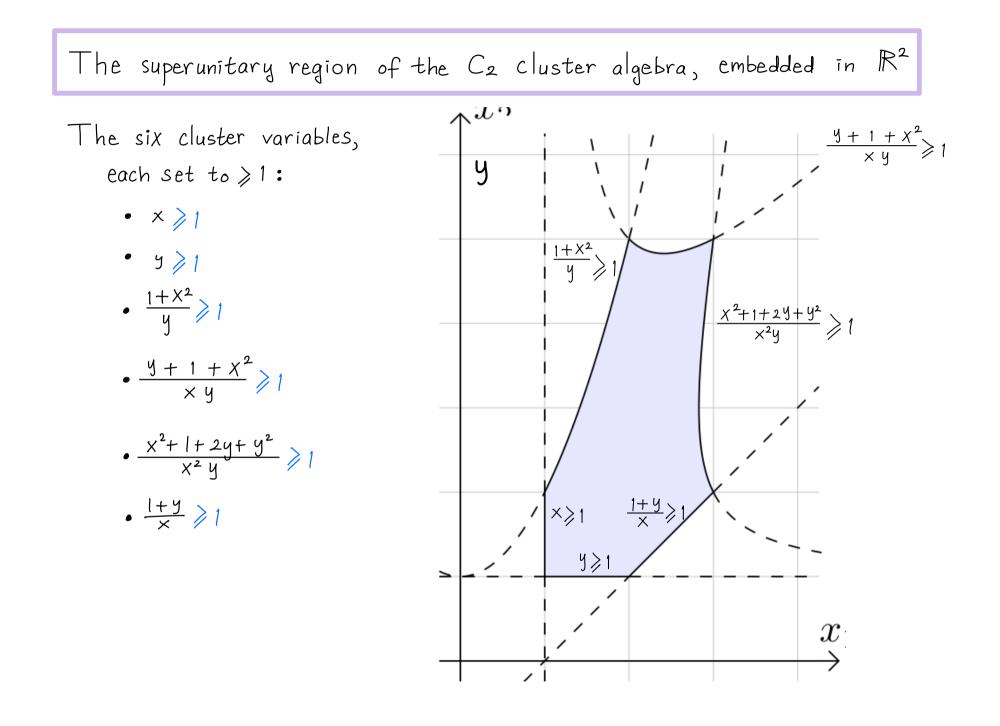
y

• $\frac{1+X^2}{4}$

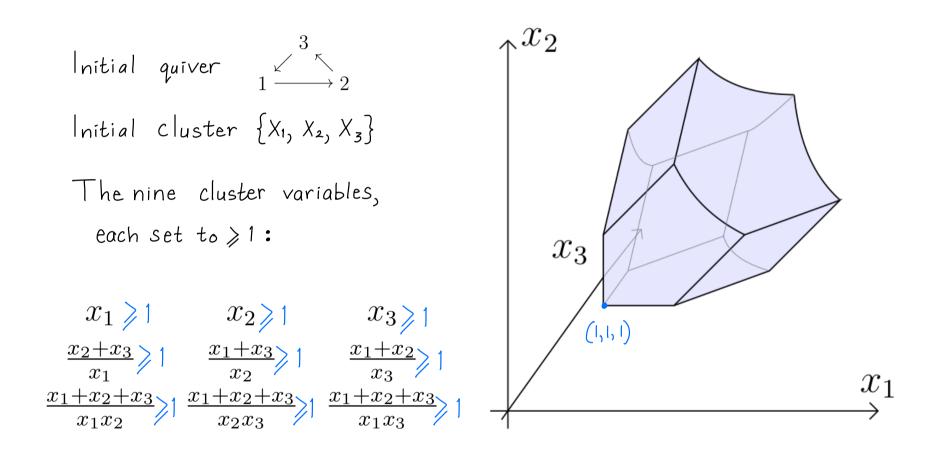
• $\frac{1+y}{x}$

 $\cdot \frac{y+1+\chi^2}{\times y}$

 $\cdot \frac{X^2 + |+ 2y + y^2}{X^2 y}$



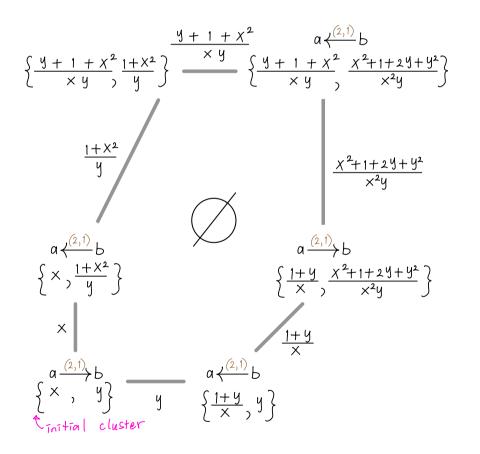
The superunitary region of the A3 cluster algebra, embedded in \mathbb{R}^3



Faces of the gen. associahedron are indexed by subclusters: a subcluster is a subset of a cluster

Idea Construct a regular CW complex with the same face structure as the generalized associahedron

E.g. for type C2 cluster algebra:

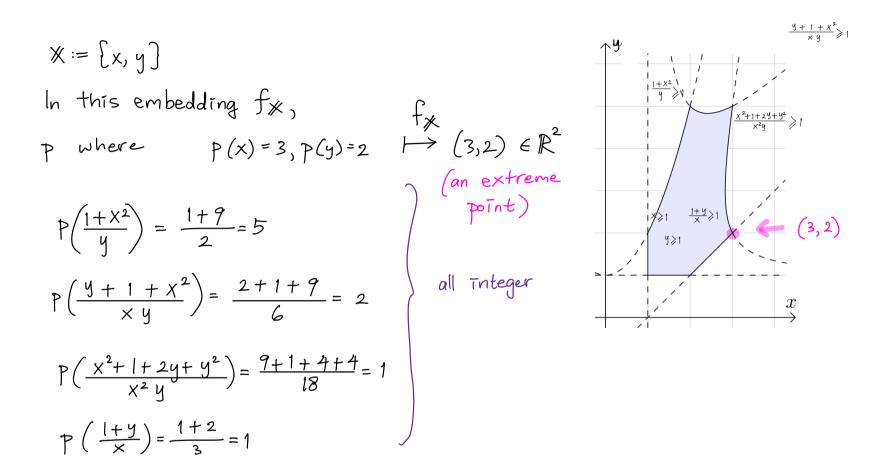


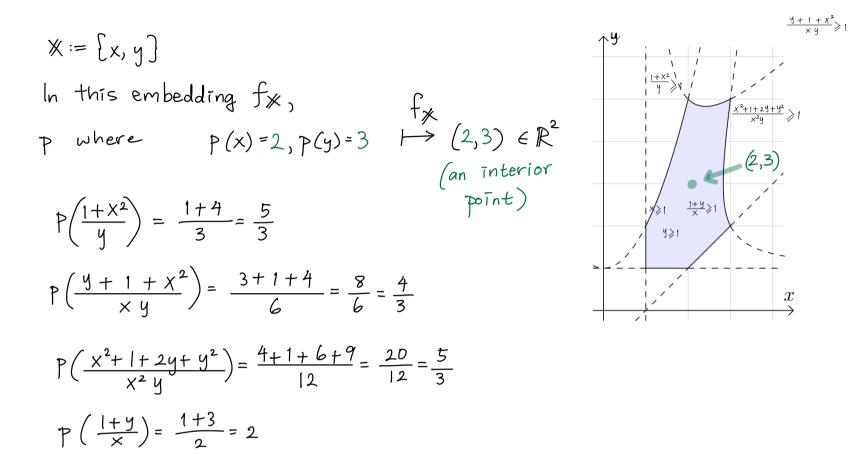
vertices \longleftrightarrow clusters facets \longleftrightarrow cluster variables interior \longleftrightarrow the empty subcluster

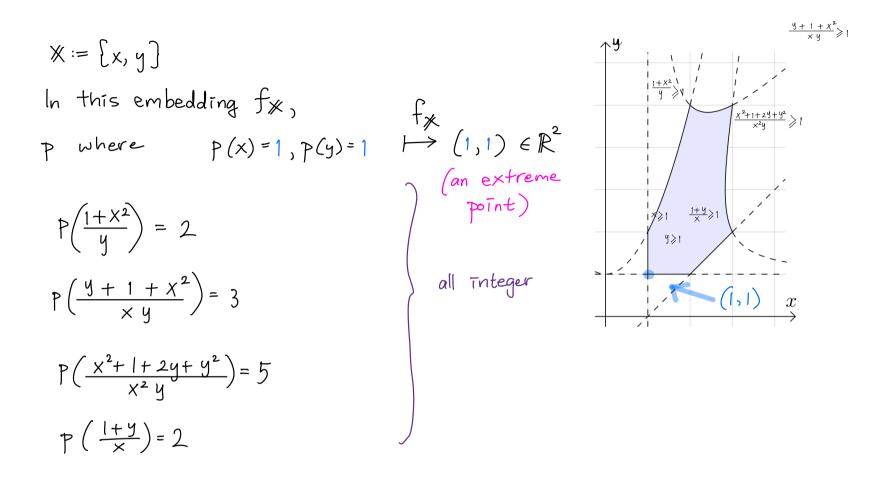
• The totally positive region of A is $A(R_{>o}) :=$ the set of ring homomorphisms $p: A \to \mathbb{R}$ which send each cluster variable to a positive number.

Fact Given a cluster
$$\mathscr{K} = \{x_1, x_2, ..., x_r\}$$
 in \mathcal{A} ,
we can identify $\mathcal{A}(\mathbb{R}>0)$ with the positive orthant $\mathbb{R}^r>0$
via homeomorphism $f_{\mathscr{K}} : \mathcal{A}(\mathbb{R}>0) \cong \mathbb{R}^r>0$
 $p \mapsto (p(x_i), p(x_2), ..., p(x_r))$
E.g. $\mathscr{K} = \{x_{i,x_2}\}$
if $p(x_i) = 1$, $p(x_2) = 1$ then $f_{\mathscr{K}}(p) = (i, 1)$
 $if p(x_1) = 3$, $p(x_2) = 2$ then $f_{\mathscr{K}}(p) = (3, 2)$
 $f_{\mathscr{K}}(p) = (3, 2)$

Superunitary region
"bigger than 1"
Main Def The superunitary region of a Dynkin type cluster algebra
$$\mathcal{A}$$
 is
 $\mathcal{A}(R_{\geq 1}):= \{ \begin{array}{c} ring \text{ homomorphisms } p: \mathcal{A} \rightarrow \mathbb{R} \text{ such that} \\ p(x) \geq 1 \text{ for all cluster variables } x \} \subset \mathcal{A}(R_{>0}) \\ rotally \text{ positive region} \\ \end{array} \} \subset \mathcal{A}(R_{>0}) \\ rotally \text{ positive region} \\$
Given a cluster \mathcal{X} , use homeomorphism $f_{\mathcal{X}}: \mathcal{A}(\mathbb{R}_{>0}) \xrightarrow{\sim} \mathbb{R}^{r}_{>0} \\ \text{to embed } \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ into } \mathbb{R}^{r}_{>0}: \\ \text{superunitary region} \\$
Set each cluster variable $\geq 1 \\ \text{(positive Laurent polynomial)} \\ \text{E.g. Embedding of } \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ into } \mathbb{R}^{2} \\ using \qquad a (2,1) \\ \mathcal{X} = \{x, y\}: \\ \end{array}$







<u>Thm A</u> If A is a Dynkin type cluster algebra, the superunitary region $\mathcal{A}(\mathbb{R}_{\geq 1})$ is a regular CW complex which is cellular homeomorphic to the generalized associahedron.		
Subcluster face indexed by subcluster \times is $\{p: A \rightarrow \mathbb{R} \text{ s.t } p(a) = 1 \text{ iff } a \in \mathbb{X}\}$		
• k-face \longleftrightarrow a subcluster X of size r-k		
$(r-1)$ -face $\langle $ a cluster variable \times (facet)		
$1-face \leftrightarrow a subcluster X of size r-1 (aka a mutation) (edge)$		
• O-face (vertex) $\langle \cdots \rangle$ a cluster $\mathscr{X}=\{x_1, x_2, \dots, x_r\}$		
• Boundary of $\mathcal{A}(\mathbb{R}_{\geq 1}) = \bigsqcup_{\text{χ nonempty}}$ subcluster face indexed by \mathbb{X}		
• Interior of $\mathcal{A}(\mathbb{R}_{\geq 1}) = \{p: \mathcal{A} \rightarrow \mathbb{R} \text{ where } p(x) > 1 \forall cl. var x \}$		
indexed by the empty subcluster		
<u>Cor</u> $\mathcal{A}(\mathbb{R}_{\geq 1})$ is closed and bounded.		
Pf The generalized associated ron is a polytope.		

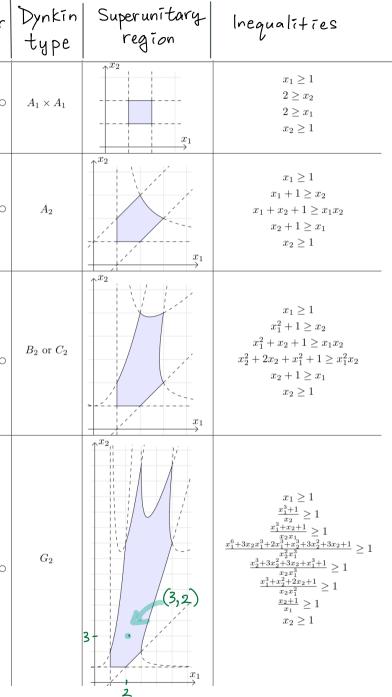
$$\begin{array}{l} \underline{Def} \ \mbox{The set of } \underline{frieze \ points} \ \ is \\ \end{tabular} superunitary \\ region \\ \end{tabular} \\ \end{tabu$$

$$\begin{array}{c} \underline{Cor} & \text{If } \mathcal{A} \text{ is a Dynkin type cluster algebra,} \\ & \text{the set of frieze points is finite.} & \text{totally positive region} \\ \\ \underline{Pf} & \text{The homeomorphism } \mathcal{A}(\mathbb{R}_{\geq 0}) \cong \mathbb{R}_{\geq 0}^{r} \\ & \text{restricts to} & \mathcal{A}(\mathbb{Z}_{\geq 1}) \hookrightarrow \mathbb{Z}_{\geq 1}^{r} \\ & \text{positive orthant} \\ & \text{pos integral points} \\ & \text{and} & \mathcal{A}(\mathbb{Z}_{\geq 1}) \hookrightarrow \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ super unitary} \\ & \text{region} \\ \\ \\ & \text{Since } \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ is bounded, the set of frieze points is finite.} \end{array}$$

What do we mean by positive integral friezes (in this talk)?
Def Q a (valued) Dynkin quiver, e.g. Q=
build the "repetition quiver" ZQ
...
A positive integral frieze is a function
$$\mathbb{Z}Q \rightarrow \mathbb{Z}_{>1}$$
 satisfying ...
(Conway-Coxeter 1970s) for each $a \downarrow d \downarrow d$, we have $ad - bc = 1$
E.g. a type A3 $\mathbb{Z}_{>1}$ -frieze ... $a \downarrow d \downarrow d \downarrow d$
(Caldero-Chapoton 2006 and
Assem-Reutenaur-Smith 2010,
in general
friezes \leftrightarrow cluster algebras

Fact If Q is Dynkin, $A(\mathbb{Z}_{\geq 1}) \xleftarrow{I-1} \mathbb{Z}_{\geq 1}$ - friezes of Q frieze points		
Thm B If Q is Dynkin, there are finitely many $\mathbb{Z}_{\geq 1}$ -friezes of Q.		
<u>Pf</u> Earlier we said $\mathcal{A}(\mathbb{Z}_{\geq 1})$ is a finite set.		
History of proofs, by type	Techniques	
√ Type A Conway-Coxeter 1970s	Polygon triangulations	
✓ BCD,G₂ Fontaine-Plamondon 2014	Type D triangulations (once-punctured polygon)	
✓E6,F4 Cuntz−Plamondon 2018	{E6 friezes} C> {2-friezes of height 3}	
✓ E7, E8 G. — Muller 2022 Conjecture for E7, E8 was open until	Uniform proof for all types using compactness of the superunitary region	

$$\frac{\text{Thm C}}{\text{in the interior of } \mathcal{A}(\mathbb{R}_{\geq 1})}$$
iff
Q is a union of ...
• type Dn, n not prime
• type E8
• type Bn, $\sqrt{n+1} \in \mathbb{Z}_{\geq 2}$
• type G2
E.g. In rank 2, there is
a frieze point in
the interior of $\mathcal{A}(\mathbb{R}_{\geq 1})$
iff Q is of type G2
Quiver Dynk
 $\mathcal{Q}(\mathbb{R})$
 \mathcal{Q}



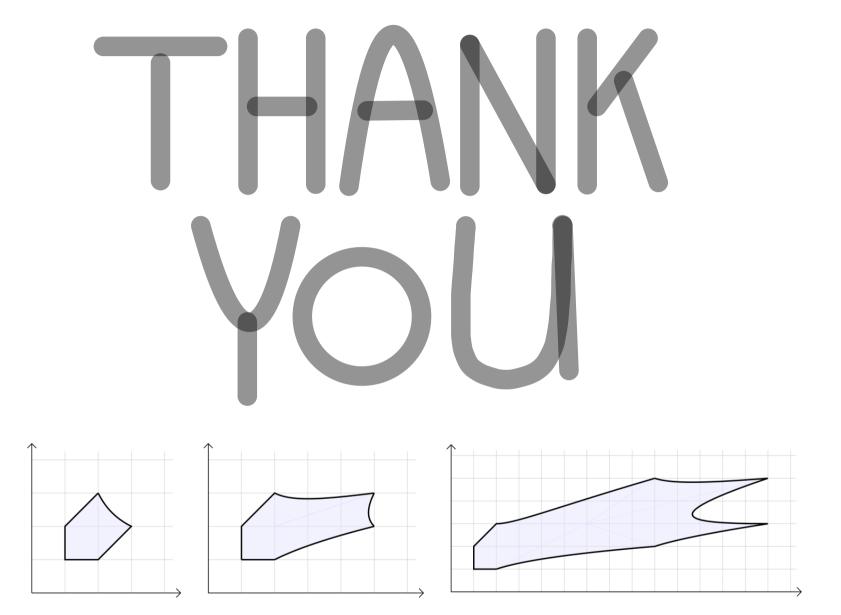


FIGURE 1. The superunitary regions of types A_2 , B_2/C_2 , and G_2 (embedded in $\mathbb{R}^2_{>0}$)