Triangulations \& maximal almost rigid modules

Emily Gunawan (University of Oklahoma)

Jt. w/ Emily Barnard, Raquel Coelho Simões, \& Ralf Schiffler

AMS Special Session on Research Community in Algebraic Combinatorics

JMM 2023 Boston
Thursday, January 5

Inspiration: Type A η map (Björner-Wachs 1997, Reading 2004)
Q quiver of type A_{n+2}

$$
\begin{aligned}
& s_{1}-s_{2}-\cdots-s_{n+2} \\
& Q=s_{1} \searrow_{s_{2}} \swarrow_{2}^{s_{3}}{ }^{\iota_{4}} \text { Type } A_{2+2} .
\end{aligned}
$$

if ${ }^{S_{i}} \searrow_{S_{i+1}}$ in Q, let \bar{i} be up

$$
\eta_{Q}: \underbrace{S_{n+1}}_{\text {symmetric group }} \longrightarrow\left\{\begin{array}{c}
\text { triangulations } \\
\text { of } P(Q)
\end{array}\right\}
$$

Path algebra
Q quiver eeg.

$$
Q=\bigsqcup_{2} \bigsqcup^{b} 3^{4^{c / 4}},
$$

$$
\begin{aligned}
Q_{0} & =\{\text { vertices }\}, Q_{1} \\
: & =\{\text { arrows }\}, \mathbb{k}:=\mathbb{C} \\
& =\{1,2,3,4\} \quad
\end{aligned}=\{a, b, c\} \text {. }
$$

Def The path algebra $\mathbb{K} Q$

- basis: $\left\{\right.$ all paths in $Q_{\text {, including the lazy path }} e_{i}$ at each vertex $\left.i\right\}=\left\{\begin{array}{lll}e_{1} & a & \\ & e_{2} & \\ b, & e_{3}, \\ c b, & c & e_{4}\end{array}\right\}$
- multiplication on two basis elements: $P P^{\prime}= \begin{cases}\text { concatenation } \\ p p^{\prime} & \text { if } P P^{\prime} \text { is a path } \\ 0 & \text { otherwise }\end{cases}$
$\mathbb{k} Q \cong$ algebra of matrices of the form
$\left[\begin{array}{c|c|c|c}\lambda_{e_{1}} & \lambda_{a} & 0 & 0 \\ \hline 0 & \lambda_{2} & 0 & 0 \\ \hline 0 & \lambda_{b} & \lambda e_{3} & 0 \\ \hline 0 & \lambda_{c b} & \lambda_{c} & \lambda_{e_{4}}\end{array}\right]$.
each $\lambda_{p} \in \mathbb{K}$ is the coefficient of the path p.
Entry in row i, col $j \longleftrightarrow$ path from vertex i to vertex j.

$$
3\left[\begin{array}{l|l|l|l}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & \lambda_{b} & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right] 4\left[\begin{array}{ll|l|l|l}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \lambda_{c} & 0
\end{array}\right]=\left[\begin{array}{l|l|l|l}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]
$$

path c path b path $c b$
path b path c

Type A module category
ind $Q=$ Indecomposable modules of the path algebra $\mathbb{K} Q$
\longleftrightarrow intervals $M(i, j), i \leqslant j$ called "strings"

$$
\varepsilon . g .
$$

$$
M(1,3)
$$

 string $a b^{-1}$ (or $b a^{-1}$ or 2^{3})
\longleftrightarrow positive roots in a type A root system

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}
$$

The Auslander - Reiten quiver of Q is a directed graph Γ_{Q} with vertices $=$ indecomposable modules
arrows $=$ irreducible morphisms

$$
Q=\Sigma_{2} \bigsqcup^{b} 3^{c^{c / 4}}
$$

Barnard - G. - Meehan - Schiffler, 2019 [BGMS 19]
A model for ind Q inspired by the η map combinatorics (for type A)
Line segments $\gamma(i, j), 0 \leqslant i<j \leqslant n+1 \longleftrightarrow$ indecomposable modules $M(i+1, j)$ (incl. boundary segments)
Lower (upper) boundary line segments \longleftrightarrow maximal increasing (decreasing) paths

Pivots \longleftrightarrow irreducible morphisms

??

$\mathbb{K Q}$: path algebra of type A
Classical def $T \in \bmod (\mathbb{K} Q)$ is maximal rigid if
(Ti) T has $\left|Q_{0}\right|$ non-isomorphic summands \# of vertices of Q
(T2) For each pair A, B of summand of T, if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, then $E \cong B \oplus A\} \underline{\text { rigid }}$

Def [BGMS 19]
$T \in \bmod (\mathbb{K} Q)$ is maximal almost rigid (mar) if
(Mi) T has $\left|Q_{0}\right|+\left|Q_{1}\right|$ non-isomorphic summands \# of vertices of Q \# of arrows of Q
(M2) For each pair A, B of summands of T, called $\left.\begin{array}{l}\text { if } 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0 \text { is a short exact sequence, } \\ \text { then } E \cong B \oplus A \text { or } E \text { is indecomposable }\end{array}\right\} \frac{a l \text { most }}{\text { rigid }}$

Rem (M1) can be replaced with:
" T is maximal with respect to (M2)"
$T h m$ [BGMS 19] $\left\{\begin{array}{l}\text { triangulations of } P(Q) \\ \text { including boundary edges }\end{array}\right\} \longleftrightarrow\{\underset{\operatorname{mar}(\mathbb{K} Q)}{\operatorname{mad}(e s}\}$

Corollary
The mar modules (type A) are Catalan objects

Thu 2 [BGMS 19]
Construct a bigger type A path algebra $\mathbb{K} \bar{Q}$
where $\left|\bar{Q}_{0}\right|=\left|Q_{0}\right|+\left|Q_{1}\right|$.
Then $M \in \operatorname{mar}(Q) \Rightarrow$

$$
\operatorname{End}_{A}(M) \cong \operatorname{End}_{\bar{A}}(T)
$$

where T is tilting in $\bmod (\mathbb{K} \bar{Q})$.

Gentle algebras

Def A finite-dimensional algebra $A=\mathbb{K} Q / I$ is gentle if:
(GI) \forall vertex i of Q, \exists at most 2 arrows starting at i \exists at most 2 arrows ending at i

(G2) I is generated by paths of length 2
(G3) \forall arrow a of Q, \exists at most 1 arrow b s.t ba $\notin I$ \exists at most 1 arrow c sit $a c \notin I$
(G4) \forall arrow a of Q, \exists at most 1 arrow b^{\prime} s.t $b^{\prime} a \in I$ \exists at most 1 arrow c^{\prime} sit $a c^{\prime} \in I$

Ex

$$
\begin{array}{lr}
Q=1 \xrightarrow{a} 2{\underset{c>}{b>}}_{\substack{ }} \quad Q=1 \xrightarrow{a} 2 \xrightarrow{c}{ }_{4} \\
\mathbb{K} Q \text { Not gentle } & I=\langle a b\rangle
\end{array}
$$

$$
\mathbb{K Q} / I \text { is gentle }
$$

$\mathbb{K Q} / \boldsymbol{I}$ is also gentle

String modules
A string ω is a walk along the arrows in $Q_{1} \cup \underbrace{Q_{1}^{-1}}_{1}$ \{opposite arrow $\left.\alpha^{-1} \mid \alpha \in Q_{1}\right\}$
with - no backtrack $a a^{-1}$ or $a^{-1} a$

- no subwalk v with $v \in I$ or $V^{-1} \in I$ (no going through relations)

Ex $Q=1 \xrightarrow{a_{2}-b^{3}} \cdot a c$ and $b^{-1} c$ are strings, $a b$ is not a string

- $e_{1}, e_{2}, e_{3}, e_{4}$ are trivial strings
[Butler - Ringel 1987]
- ω string $\longleftrightarrow M(\omega)$ string module
- If $\mathbb{K Q} /$ I is a finite representation type gentle algebra, finitely many indecomposable modules indecomposable modules are string modules.

Recall def $T \in \bmod (A)$ is tilting if
(Ti) T has $\left|Q_{0}\right|$ non-isomorphic summands \# of vertices of Q
(T2) For each pair A, B of summands of T,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, then $E \cong B \oplus A$
(TB) T has projective dimension at most 1 .

Def $A=\mathbb{K} Q /$ I finite representation type gentle algebra.
$T \in \bmod (A)$ is maximal almost rigid (mar) if
(Mi) T has $\left|Q_{0}\right|+\left|Q_{1}\right|$ non-isomorphic summands \# of vertices of Q \# of arrows of Q
(M2) For each pair A, B of summands of T, called if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence,
then $E \cong B \oplus A$ or E is indecomposable $\quad \frac{\text { rigid }}{\text { roast }}$

Rem (M1) can be replaced with:
"T is maximal with respect to (M2)"
[Opper - Plamondon - Schroll 2018] \& extra marked
[Baur - Coelho Simões 2018] points *
$A=\mathbb{k} Q / I$ is a gentle algebra iff
A comes from a 4-tuple

"Rules":
$i \xrightarrow{a} j \xrightarrow{b} k \quad a b \notin I \quad$ corresponds to configuration

$i \xrightarrow{a^{\prime}} j \stackrel{b}{\longrightarrow} k \quad a b \in I \quad$ corresponds to configuration $\quad \stackrel{a}{j}=\frac{b}{j}$ of P

Ex

$$
\begin{gathered}
Q=1 \xrightarrow{a^{---b}} 2 \xrightarrow[c]{ } 4 \\
I=\langle a b\rangle
\end{gathered}
$$

$$
(S, M, P) \rightleftarrows\left(S, M, P, M^{*}\right) \rightleftarrows\left(S, M^{*}\right)
$$

Chm 3 (Barnard - Coelho Simẽes - G.- Schiffler [B.CS.G.S])
Let $A=\mathbb{K} Q / I$ be a finite representation type gentle algebra.
Then $\left\{\begin{array}{c}\text { "permissible" ideal triangulations of }\left(S, M^{*}\right) \\ \text { including boundary edges }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\operatorname{mar} \operatorname{modules} \\ \operatorname{mar}(A)\end{array}\right\}$

Ex

$$
Q=1 \xrightarrow{a^{---b}} 2 \underset{c}{ }{ }^{3}
$$

$$
I=\langle a b\rangle
$$

$$
(S, M, P) \rightleftharpoons\left(S, M, P, M^{*}\right) \rightleftharpoons\left(S, M^{*}\right)
$$

Recall Property (M1):
Each T in $\operatorname{mar}(A)$
has $\left|Q_{0}\right|+\left|Q_{1}\right|$ summand

$c \oplus b^{-1} c \oplus \underbrace{e_{4} \oplus b \oplus e_{3} \oplus e_{1} \oplus a c} \in \operatorname{mar}(A)$
These 5 summand are required in every $T \in \operatorname{mar}(A)$

Th 4 Construct a new gentle algebra
[B.CS.G.S]

$$
\bar{A}:=\frac{\mid k \bar{Q}}{\bar{I}} \text { where } \quad\left|\bar{Q}_{0}\right|=\left|Q_{0}\right|+\left|Q_{1}\right| .
$$

Then $M \in \operatorname{mar}(A) \Rightarrow \operatorname{End}_{A}(M) \cong \operatorname{End}_{\bar{A}}(T)$ where T is tilting in $\bmod (\bar{A})$.

$$
Q=1 \xrightarrow[c]{a^{---b}} 2 \underset{4}{2} \quad I=\langle a b\rangle
$$

$$
\bar{Q}=1 \xrightarrow{a_{1}} a \xrightarrow{a_{2}^{\prime}-b_{1}} \operatorname{col}_{4} b_{3} \quad \overline{\mathrm{I}}=\left\langle a_{2} b_{1}\right\rangle
$$

$$
A=\mid k Q / I
$$

3
(4)
(4)

$M \in \operatorname{mar}(A)$

T is a tilting module over \bar{A}
$\operatorname{Thm~} 4^{\operatorname{mar}^{\prime}} \operatorname{End}_{A}(M) \cong \operatorname{End}_{\bar{A}}\left(\frac{\downarrow}{T}\right)$

What is a permissible arc? (extra)
string modules of $\mathbb{K} Q / I \stackrel{1-1}{\longleftrightarrow}$ permissible $\operatorname{arcs} \gamma$ in S :
(i) endpoints are in R
(ii) each pair of consecutive crossings of γ and P corresponds to an arrow of Q
$\xrightarrow{\gamma}$ (locally cuts up a triangle)
Ex (S, M, P)

$Q=1 \xrightarrow[c]{a^{\prime-}} \underset{c}{\stackrel{-b}{c}} 4$
$I=\langle a b\rangle$

- γ is not permissible
- Consecutive crossings $\operatorname{arc} 1$, $\operatorname{arc} 3$ do not correspond to an arrow of Q

permissible γ
\leftrightarrow string $b^{-1} c$ or $c^{-1} b$

permissible γ \leftrightarrow trivial string e_{2}

Example (extra)
$(S, M, P) \quad(S, M, P) \quad(S, M, P, R) \quad(S, R)$

$I=\langle a b, c a\rangle$

An annulus with 3 points on one bdry \& 1 point on the other

Not permissible the crossings w/ p at $\operatorname{arc} 2, \operatorname{arc} 4$ do not to an arrow in Q

permissible

trivial string e_{4}

Def/Prop The oriented flip graph of $\operatorname{mar}(\mathbb{k Q} / \mathrm{I})$: arrows are "positive" diagonal flips

Ex The flip graph of $\operatorname{mar}(\mathbb{K Q} / \mathrm{I})$ for $Q=1 \xrightarrow[c]{a-r} \underset{\substack{-2}}{ } \quad I=\langle a b\rangle$ is ...
 In type A, the flip graph of $\operatorname{mar}(\mathbb{k} Q)$
is an oriented exchange graph of a type A cluster algebra\& a Tamari/Cambrian lattice

[Barnard-G.-Meehan-Schiffler 2019] In type A, the flip graph of $\operatorname{mar}(\mathbb{k} \mathbb{Q})$
projective"
$c \oplus b^{-1} c \oplus$ $e_{4} \oplus b \oplus e_{3} \oplus e_{1} \oplus a c$

