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Solitary waves (solitons)
Scott Russell’s first encounter of solitary waves at the Union Canal:

‘I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped—not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change
of form or diminution of speed. I followed it on horseback, and overtook
it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles I lost
it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon

which I have called the Wave of Translation.’

Soliton on the Scott
Russell Aqueduct on
the Union Canal
near Heriot-Watt

University, July
1995

Credit:

ma.hw.ac.uk/solitons/press.html
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http://www.ma.hw.ac.uk/solitons/press.html

Solitary waves
(Desmos link by D. Zeng)
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https://www.desmos.com/calculator/83du3dvasv

Multicolor box-ball system (BBS), Takahashi 1993

A boz-ball system (BBS) is a dynamical system of BBS configurations.

» At each configuration, balls are labeled by numbers 1 through n in an infinite

strip of boxes.

» FEach box can fit at most one ball.

Example

A possible BBS configuration:

|4

5

3
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Box-ball move (from t =0 to t = 1)

Balls take turns jumping to the first empty box to the right, starting with the
smallest-numbered ball.

L0 4l512(3(6]1
4152036 |1
415 [3]6]2]1
415 612]1]3
504 [6)2]1]3
41516(2(1]3
R 415 136
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Box-ball moves (¢ = 0 through ¢ = 5)

- 415(2]3]6]1
— 45 1]3]6

F g 45 1{3]6

- 41215 1{3]6

_— 4 5 1{3]6
s 4 5 136
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Solitons and steady state

Definition
A soliton of a box-ball system is an increasing run of balls that moves at a speed
equal to its length and is preserved by all future BBS moves.

Example
The strings 4, 25, and 136 are solitons:

3 41215 136
R 4 5 136
Pk 4 5 1316

After a finite number of BBS moves, the system reaches a steady state where:
» the system is decomposed into solitons, i.e., each ball belongs to one soliton

» the lengths of the solitons are weakly decreasing from right to left
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Tableaux (English notation)

Definition

» A tableau is an arrangement of numbers {1, 2,...,n} into rows whose lengths
are weakly decreasing.

» A tableau is standard if its rows and columns are increasing.

Example
Standard Tableaux: 2|4 1 6 1134
2 2
4 5| 8
§
Nonstandard Tableau: 1123
51617
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Soliton decomposition

Definition

» Let S, be the symmetric group on n elements. Represent permutations of S,

in one-line notation as
w=w(lw(2) - -w(n), eg. w = 452361.

» To construct soliton decomposition SD(w) of w, start with the one-line
notation of w, and run BBS moves until we rearch a steady state; the 1st row
of SD(w) is the rightmost soliton, the 2nd row of SD(w) is the next rightmost
soliton, and so on.

Example
s 1275 136
_ 1 5 11376
113/6
SD(452361) = |2|5| with shape (3,2,1).
4
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RSK bijection

The Robinson—Schensted—Knuth (RSK) insertion algorithm is a bijection

w = (P(w), Q(w))
from .5,, onto pairs of size-n standard tableaux of equal shape.

Example

Let w = 452361. Then P(w) = and Q(w) =
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RSK bijection example
Let w = 452361.

1 11316
P: 4 45 29 23 236 5 5 pu)y=la5
4 4 5 4 5
4 4
1 2 5 11215
1 2 1 2 1 2 5
Q: 1 12 3 2 4 24 Q(w)—24

Insertion and bumping rule for P
» Insert x into the first row of P.

» If x is larger than every element in the first row, add = to the end of the first row.

» If not, replace the smallest number larger than x in row 1 with z. Insert this number
into the row below following the same rules.

Recording rule for Q
For Q, insert 1,...,n in order so that the shape of ) at each step matches the shape of P.
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The Q tableau determines the dynamics of a box-ball system

Theorem (SUMRY 2021)

If Q(v) = Q(w), then the box-ball systems of v and w are identical if we ignore the
ball labels, in particular:

» v and w first reach steady state at the same time, and

» the soliton decompositions of v and w have the same shape

Example v = 21435 and w = 31425

Qv) = Qw) = 511"

Both v and w first reach steady state at £t = 1.

p—t

319

p—

215

SD(v) =

S

SD(w) =

W

N}
o
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Questions (steady-state time)

The time when a permutation w first reaches steady state is called the
steady-state time of w.

» Given a Q-tableau, find a formula to compute the steady-state time for
all permutations in the Q-tableau class.

» Find an upper bound for steady-state time.
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L-shaped soliton decompositions

Theorem (SUMRY 2021) q

If a permutation has an L-shaped soliton decomposition SD =

then its steady-state time is either t =0 or t = 1.

Example

Such permutations include noncrossing involutions and column reading words of

standard tableaux.

Both v = 21435 and w = 31425 have steady-state time ¢ = 1.

1{3]5 1{2]5
SD(v) =4 SD(w) = |4
2 3

v = 21435 = (12)(34) and w = 31425 is the column reading word of

| —

[\
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Maximum steady-state time

Theorem (UConn 2020)
If n > 5 and

Qw) =

S| W|
S

then the steady-state time of w is n — 3.

Conjecture

For n > 4, the steady-state time of a permutation in .5, is at most n — 3.
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Box-Ball System Example (f = 0 through 5)

Let w = 452361. Then Q(w) = ;, 121 : and the steady-state time of w is 3 =n — 3.
6
t=0 |45 3161
t=1 415 1136
t=2 415 1136
t=3 4 5 11316
t=4 4 5 113]6
t=25 4 5 11316
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Questions (soliton decomposition)

» When is the soliton decomposition SD a standard tableau?
» (Can we classify permutations with standard SD using pattern avoidance?

» (lassity the permutations with the same soliton decompositions
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When is SD(w) a standard tableau?

Example
1136 113]5 11215
SD(452361) = [2]5 SD(21435) = |4 SD(31425) = |4
4 2 3

Theorem (UConn 2020 + D. Grinberg)

Given a permutation w, the following are equivalent:
1. SD(w) is standard
2. SD(w) = P(w)
3. the shape of SD(w) is equal to the shape of P(w)

Definition
We say that a permutation w is BBS-good (or “good” for short) if the tableau
SD(w) is standard.
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Q(w) determines whether w is good

Proposition

Given a standard tableau 7', either
SD(w) is standard for all w such that Q(w) =T,

or

SD(w) is not standard for all w such that Q(w) =T.

Definition (good tableaux)

A standard tableau T is good if each permutation whose QQ tableau equals T is good.

» Question: How many good tableaux are there?
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Answer: Good tableaux are counted by the Motzkin numbers!

Work in preparation (SUMRY 2022)

The good standard tableaux, {Q(w) | w € S,, and SD(w) is standard}, are counted
by the Motzkin numbers:

Mo=1,  M,=M, 1+ ?ijMiMngi
OO OO0
I PN N VN

n=3

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Future: Characterize good permutations using pattern avoidance

(g & Frac‘ gl?oﬂ@)
A pattern v is a consecutive pattern of a permutation w if w has a consecutive

subsequence whose elements are in the same relative order as v. Otherwise, w
avoids v.

» w = 314592687 contains v = 2413 because the subsequence 5926 is ordered in
the same way as 2413

» w = 314592687 avoids v = 321 because 314592687 has no consecutive
subsequence ordered in the same way as 321.
(Remark: 314592687 contains a non-consecutive subsequence with pattern 321.
What is this subsequence?)

Further question: Come up with a statement “a permutation is good iff it avoids
the consecutive patterns ...”
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Knuth moves (g < Fraci gl?Je)

» A Knuth move between two v, w € .S, is the act of swapping consecutive entries
yrz and yzr  (Knuth move of the first kind) or
rzy and zry  (Knuth move of the second kind)
where r < y < z, or
rzys and 1 zzys  (Knuth move of both kinds (Kp))
where © < 11,12 < 2.

» We say v and w are Knuth equivalent if they differ by a sequence of Knuth
moves.

Example

326514 ~%2 326154 326154 ~%1 362154 362154 ~5B 362514
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P-tableaux and Knuth moves (S . ope 4 clide >
Theorem (Knuth, 1970)

» There is a path of Knuth moves from w to the row reading word of P(w).

» Two permutations have the same P tableau iff they are in the same Knuth
equivalence class.

Example

The Knuth equivalence class of the row reading word r» = 362514 of
r = 362514 3|0

o N

362154 326514

Kl, not KN /(2, not KB

326154
.
321654

(\)
ot
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Future: Classify permutations with the same soliton decomposition

Partial Result (UConn 2020): The soliton decomposition is preserved by non-Kp
Knuth moves, but one K move changes the soliton decomposition.

Example

Soliton decompositions of the Knuth equivalence class of 362154:

4
B

BENE

K1, not Kp %not Kg

N[

4
3]
6

r = 362514

w

(g < FF@C\ gl?Ja)

VRS

W

362154 326514

ot

|w|® Mo [ =

S| 326154
i
321654

4]

1
2
6
3

|oo|w|cn|m —
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Question: Classify permutations with the same soliton decomposition

635241 (S - FF@C‘ Sl?oue,>

D

|ww»—l

o]

4]

1 1

L 365241 635214 632541 é

- 1[4 6]

K4 215 .
2 2 %
114 - 1{4
R 362541 365214 r — 632514 25
E 114 E
215
Kp o Kp

14| — T4
2 5
%: 326541 632154 %
B G

The Knuth equivalence class of » = 632514, with their soliton decompositions
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Emily Gunawan, University of Oklahoma,
joint with G. Muller (on cluster algebras, 2020—present),
E. Barnard, E. Meehan, R. Schiffler (on type A quivers and Cambrian posets, 2018-2021),
E. Barnard, R. Coelho Simdes, R. Schiffler (on more general quivers, 2021—present)

Lewis and Clark College
Mathematical Sciences Department Colloquium
February 6, 2023



InsPira’cion:TudFe A Cambrian Eose,t (‘BJBTner‘— Wachs |777, REQATng, 9_004)

C

1 3 Def
0 @4 The n-th Cotalon number
1 3 3 is the number of

0 @ 1 ‘('/Vian%ula‘l:?ons of

2 an [n+9_)—g{on
F
4

1 N3
0.@ 0./5 2\.4 Cotalan objects are
. _ _ ob{ects that are
2 \ 1 3/ 2 3 -
0-@4 Counted E%— ~the alan
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2

TUFe Aqs Tamari poset Ca gre,dal case of (Cambrian Posets>



Path algebra
¢ 4
Q cT/uiver e.4- Q= ‘% \3/3/) )}<::£
2

Def The path algebra kX e, a
e basis: {all Faths n Qw"”d“"mﬂr the laZg Ea{:h e; at each Ver-LexT} - b e,
b
Conca;emian / b ¢ &
o muH—,iPlfca'[:io»’l on two basis elements FP’:{PP' if Pp s a quh
0 otherwise
e lda| 0] 0]
kQ = a\%ebra of matrices of the 'QD"‘M 0 alo |0
0 [M )\C; 0
0 >\Cb A >\sz_

each /AF < )k iS 'H’le Coe_-FFl'cJer)‘b O-F ‘the ?a-th F

En‘}r% Th Yow T) col J &> 'Fa‘th —F(‘om vertex | o Vertex g_

) 3 2 ) 2 2 o 3 _
0[0]0|0 0[0]0|0 0j0/0]0 0[0]0|0 0/0j0]0 0/0/0]0
0j0j0]0 0000 _ [0|0f0]|O 0[0]0]0 0j0]|0|0O| |0J0O|O]O
Eﬂ 0[0]/0|0| 30[A,/0O[O0O] ~ |0[0]0O]|O anA 310(2,/ 010 0/0j0j0O| = [0]0]|0]O
410(0]2]0] [0|0[0[0] 4 0s|0|0] 10/0]0|0] 4[0[0(A]0] ojofo|o
path ¢ path b path cb path b path ¢ 0



Modules of the ?a'th algebm k Q

A wmodule over an o\laelwa s a gemeralizaﬁoh of vector sFace

e addifion
Y

° |nstead o{ mul-l-"\Fli cation {zy a Scalar Ca number in R or d:>)

VVI(AH'?F‘% by an element of the algebra (e.g. Z of |KQ>

(n {U"FQ A L.

" " M(1)3>
Ino\emeoSal:le modules  of the Foctln al%ebra IKQ 5.3, /le

N L2
\1/
S-[;r(“n% QB‘ oY ba?' oY 1_23\>

<£—s  intervals MCI)j'j L 1< called “Str?nas"



he Auslander—Reiten q uiver

The Auslander — Reiten ol/u?ver of Q is a directed %rarlﬂ FQ With

vexrtices: 'mo\ecbm?os:ahle_ vodules

\ -
arvows :  irveducible Mor?h&msl'

Auslander— Reiten %UWBT V@ of Q:

Q= TR e o \3/ 2\13/
/24\13/2\
NSNS



baﬁ(\ard — G,— Meehan — Schiff ler, 2019 [B GMS 17]
A model —For ind (R insFireo\ b% the Cambrian Posets (—For ‘Eﬂre A>

[ et A L4 ¢
| _ine Se%m s X(‘ QD) 0) '<J & N+| AN Tno\ecomFosable modules M (i+1, 3')
C?nclu&fng, \;ounolar% geggmeﬂé/g>

MovTW% one e;noIFoTvr(: courter clockuice <4—  irreducible morrh?sms

SR T
N, N, N SN S
@ Vo 3 13
T3 SN 3/2\1 3 / \ / \
A T ST L3 ;
"N N, N

S ! 3
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A new class of modules
k&R - ]>a+h al%e,\o‘(‘q of ‘E%Fe_ A

Classical deg T émOcl(IKQ> is  maximal rigid if

(T1) T haos l&ol non-isomorphic summands
# of vertices of R
(T2) For each patr A, B of summands of T, }

if 0>B—>E—A—>O is a short exact seguence, then F = P@A

Def [BGMS 19]
T emOol(le> s  maximal almost vigid (mar) if

M1 T has [ Rl + | Q| hoyi-isomorphic summands
i of vertices of R A of arrows of X
(M2) For each patc A, B of summands  of T, called
almost

if O>R—E—A—> 0O is a short exact sequence,
rfgiov
then EEZDBD®A or FE s Ind@comFoSaE[e

Rem  (M1)  can be veplaced with :
T s maximal  with feg?ec/t +o [MQ—>'(



trianaulations of P(Q) } %_/ dul }
Thm [BGMS ]7] %Tncljohna, Foundary edges <> mar modules

maT(IkQ)

Corollaffg The war wodules ('&SFE’//AD are Catalan o&ejects @U§

There is a natuval Cambrian POSC{Z structure we can Fut on the mar modules

T 3

1
o 4 5@,

o

1 3 / 2
13 3 13 13 0@4
AR E R WA 3
1 ‘3 1 3
3 3 3 0@4 0@4
01,040 , ,0,, 5

1 3 3 3
) $461®234€B2®24

. 3
\;;1®2

13
D4

263

1.3 3
,®,P18,040203

Currert &—gu‘ture work[w‘;tln E. Barnard, R. Coelho Simoes, R. Schiffler 20 LI ~—nowj

Tell a similar stery about mar modules for “gentle a(c&':/bmg"j

“string algebrae”, and wmore.



COVH/OOUQ— Coxete\r {ri@z@ FaJEJce(m 6770%

3 1 2 2 1 3 (Row?2)
2 2 1 3 1 2 2 1 1

tules : seach diamond a d satisfies ad—bc=1
c

°0h\y Fos}t(‘ve integers ove allowed

X ConWatl——Coxe-Eer -(rieze Fa‘t‘ﬁerns ave (atalan o[U’ec%.SJ
Why ¢
2nd vow of a frieze pattevn

with n r\on—tr‘?VTal YouwQ

<> ’trTan%ula{:('on o{: an (n'f-g)-aon



FomiH—Ze|evfnsl<y cluster alac:Eras C,Zoot)

’KR&F[aCe the non-trivial Tnteae,rg with Laurent polynomials:

1 1 1 1 1 2 9
rty+1 y+1 ozl rty+1
Ty L T Y Y Ty 1 1
3
z+1 rty+1 y+1
Y Y Ty v T
1 1 1 1 1 1

x The digmond vule skl holde, eg. ﬁ%‘,‘y—x.h?

% These <ive Laurent ?olljnom‘ws are called cluster variables

*_\\'Def” L D}/nlﬁn c((‘quam O-F ~[;,7-Pe AZ . e—e
The type Az cluster algebra is the Subring of the field ol fational
functions Z (%,¥) generated by thece Live cluster variables

(gchFFe/ci SUJ&>




"Def’ |G- Muller 2029]
T he SuFe\rum‘taW% region of the Az cluster alﬂekm) embedded n R*

T he five cluster variables,
each set to p1:
e X
Y
. 1+ X
y
Y+ 1 +X
XY
. [+Y
X

%uTver: Xﬁ}’ & ‘Eriargulaﬁor\:



T he superunitary region of the Az cluster a|3el>ra) embedded in R

The nine

cluster variables)

each set to p 1 :

L1 }]
:132—|—m3>]

1

T2 ) |
$1+333>

2

L3 ) |

T1+x2
“z5 7|

a:1+:IJ2+:IJ3> :I:1+:1:2+:c3>] w1+x2+:c3>]

L1T2

@nver:

23

X3
N \XZ

13

X ‘I'wr?qn%u [ation:

\«/L.Z

(L0
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ot



[Fomin—Zdevfmsky 2001]

Note: A D}’nkin c[(agmm ] o Cluster algebra A
ABCDEFG of frarte type A

Lhm [6.-Muller 2029]

The SuFerum"(:ar)/ Te%ion of a Linite %yFe cluster alaebm is
a ‘(:O‘Fo(ogfc,a\ Fo[y{yfe with -the same {aae Stvuctuce

as ‘the associahedyron

Fm‘,we wovy K :
¥ Trove thet the SuFerumtar)/ region is cortatned in the convex hull

of 1ts extreme Foin{,s

X Study the Superunitary fegions ( no lon%er f>ounc0@4> of
tafinite type cluster alc&e,E\raS

* We used +his theorem +o aive o uniform  proof of a C,on\'g_ec_'tu\"e
that there ace -FTh?‘cely mMany Fos?'tfve Tn‘ce%ra( —FrFezes of -E}/Fe
ARBCDEFS.  (an we qTFly 't 4o other 7/ues1ciom92
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