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Solitary waves (solitons)
Scott Russell’s first encounter of solitary waves at the Union Canal:

‘I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped—not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change
of form or diminution of speed. I followed it on horseback, and overtook
it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles I lost
it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation.’

Soliton on the Scott

Russell Aqueduct on

the Union Canal

near Heriot-Watt

University, July

1995

Credit:

ma.hw.ac.uk/solitons/press.html
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http://www.ma.hw.ac.uk/solitons/press.html


Solitary waves
(Desmos link by D. Zeng)
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https://www.desmos.com/calculator/83du3dvasv


Multicolor box-ball system (BBS), Takahashi 1993

A box-ball system (BBS) is a dynamical system of BBS configurations.

I At each configuration, balls are labeled by numbers 1 through n in an infinite

strip of boxes.

I Each box can fit at most one ball.

Example

A possible BBS configuration:

· · · 4 5 2 3 6 1 · · ·
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Box-ball move (from t = 0 to t = 1)
Balls take turns jumping to the first empty box to the right, starting with the

smallest-numbered ball.

t = 0 · · · 4 5 2 3 6 1 · · ·

· · · 4 5 2 3 6 1 · · ·

· · · 4 5 3 6 2 1 · · ·

· · · 4 5 6 2 1 3 · · ·

· · · 5 4 6 2 1 3 · · ·

· · · 4 5 6 2 1 3 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·
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Box-ball moves (t = 0 through t = 5)

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Solitons and steady state
Definition

A soliton of a box-ball system is an increasing run of balls that moves at a speed

equal to its length and is preserved by all future BBS moves.

Example

The strings 4, 25, and 136 are solitons:

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

t = 5 4 2 5 1 3 6

After a finite number of BBS moves, the system reaches a steady state where:

I the system is decomposed into solitons, i.e., each ball belongs to one soliton

I the lengths of the solitons are weakly decreasing from right to left
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Tableaux (English notation)
Definition

I A tableau is an arrangement of numbers {1, 2, ..., n} into rows whose lengths

are weakly decreasing.

I A tableau is standard if its rows and columns are increasing.

Example

Standard Tableaux:
1 2 4

3 5

6 7

1 3 6

2 5

4

1 3 4

2 7

5 8

6

Nonstandard Tableau:
1 2 3

5 6 7

4
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Soliton decomposition
Definition

I Let Sn be the symmetric group on n elements. Represent permutations of Sn

in one-line notation as

w = w(1)w(2) · · ·w(n), e.g. w = 452361.

I To construct soliton decomposition SD(w) of w, start with the one-line

notation of w, and run BBS moves until we rearch a steady state; the 1st row

of SD(w) is the rightmost soliton, the 2nd row of SD(w) is the next rightmost

soliton, and so on.

Example

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

SD(452361) =
1 3 6
2 5
4

with shape (3, 2, 1).
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RSK bijection

The Robinson–Schensted–Knuth (RSK) insertion algorithm is a bijection

w 7! (P(w),Q(w))

from Sn onto pairs of size-n standard tableaux of equal shape.

Example

Let w = 452361. Then P(w) = 1 3 6

2 5

4

and Q(w) = 1 2 5

3 4

6

.
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RSK bijection example
Let w = 452361.

P : 4 4 5
2 5
4

2 3
4 5

2 3 6
4 5

1 3 6
2 5
4

P(w) =
1 3 6
2 5
4

Q : 1 1 2
1 2
3

1 2
3 4

1 2 5
3 4

1 2 5
3 4
6

Q(w) =
1 2 5
3 4
6

Insertion and bumping rule for P

I Insert x into the first row of P.

I If x is larger than every element in the first row, add x to the end of the first row.

I If not, replace the smallest number larger than x in row 1 with x. Insert this number

into the row below following the same rules.

Recording rule for Q
For Q, insert 1, . . . , n in order so that the shape of Q at each step matches the shape of P.
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The Q tableau determines the dynamics of a box-ball system
Theorem (SUMRY 2021)

If Q(v) = Q(w), then the box-ball systems of v and w are identical if we ignore the

ball labels, in particular:

I v and w first reach steady state at the same time, and

I the soliton decompositions of v and w have the same shape

Example v = 21435 and w = 31425

Q(v) = Q(w) =
1 3 5
2 4

Both v and w first reach steady state at t = 1.

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3
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Questions (steady-state time)

The time when a permutation w first reaches steady state is called the

steady-state time of w.

I Given a Q-tableau, find a formula to compute the steady-state time for

all permutations in the Q-tableau class.

I Find an upper bound for steady-state time.
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L-shaped soliton decompositions
Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition SD =

1 . . .

.

.

.

,

then its steady-state time is either t = 0 or t = 1.

Example

Such permutations include noncrossing involutions and column reading words of

standard tableaux.

Both v = 21435 and w = 31425 have steady-state time t = 1.

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3

v = 21435 = (12)(34) and w = 31425 is the column reading word of
1 2 5
3 4

.
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Maximum steady-state time

Theorem (UConn 2020)

If n � 5 and

Q(w) =

1 2 . . . n� 2 n� 1

3 4

n

,

then the steady-state time of w is n� 3.

Conjecture

For n � 4, the steady-state time of a permutation in Sn is at most n� 3.
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Box-Ball System Example (t = 0 through 5)

Let w = 452361. Then Q(w) =
1 2 5
3 4
6

and the steady-state time of w is 3 = n� 3.

t = 0 4 5 2 3 6 1

t = 1 4 5 2 1 3 6

t = 2 4 5 2 1 3 6

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

t = 5 4 2 5 1 3 6
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Questions (soliton decomposition)

I When is the soliton decomposition SD a standard tableau?

I Can we classify permutations with standard SD using pattern avoidance?

I Classify the permutations with the same soliton decompositions
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When is SD(w) a standard tableau?
Example

SD(452361) =
1 3 6
2 5
4

SD(21435) =
1 3 5
4
2

SD(31425) =
1 2 5
4
3

Theorem (UConn 2020 + D. Grinberg)

Given a permutation w, the following are equivalent:

1. SD(w) is standard

2. SD(w) = P(w)

3. the shape of SD(w) is equal to the shape of P(w)

Definition

We say that a permutation w is BBS-good (or “good” for short) if the tableau

SD(w) is standard.
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Q(w) determines whether w is good

Proposition

Given a standard tableau T , either

SD(w) is standard for all w such that Q(w) = T ,

or

SD(w) is not standard for all w such that Q(w) = T .

Definition (good tableaux)

A standard tableau T is good if each permutation whose Q tableau equals T is good.

I Question: How many good tableaux are there?
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Answer: Good tableaux are counted by the Motzkin numbers!

Work in preparation (SUMRY 2022)

The good standard tableaux, {Q(w) | w 2 Sn and SD(w) is standard}, are counted

by the Motzkin numbers:

M0 = 1, Mn = Mn�1 +
n�2X

i=0

MiMn�2�i

n = 3

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Future: Characterize good permutations using pattern avoidance

A pattern v is a consecutive pattern of a permutation w if w has a consecutive

subsequence whose elements are in the same relative order as v. Otherwise, w
avoids v.

I w = 314592687 contains v = 2413 because the subsequence 5926 is ordered in

the same way as 2413

I w = 314592687 avoids v = 321 because 314592687 has no consecutive

subsequence ordered in the same way as 321.
(Remark: 314592687 contains a non-consecutive subsequence with pattern 321.
What is this subsequence?)

Further question: Come up with a statement “a permutation is good iff it avoids

the consecutive patterns ...”
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Knuth moves

I A Knuth move between two v, w 2 Sn is the act of swapping consecutive entries

yxz and yzx (Knuth move of the first kind) or

xzy and zxy (Knuth move of the second kind)

where x < y < z, or

y1xzy2 and y1zxy2 (Knuth move of both kinds (KB))

where x < y1, y2 < z.

I We say v and w are Knuth equivalent if they differ by a sequence of Knuth

moves.

Example

326514 ⇠K2 326154 326154 ⇠K1 362154 362154 ⇠KB 362514
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P -tableaux and Knuth moves
Theorem (Knuth, 1970)

I There is a path of Knuth moves from w to the row reading word of P(w).
I Two permutations have the same P tableau iff they are in the same Knuth

equivalence class.

Example

The Knuth equivalence class of the row reading word r = 362514 of

1 4
2 5
3 6

:

r = 362514

362154 326514

326154

321654

KB KB

K1, not KB K2, not KB

KB
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Future: Classify permutations with the same soliton decomposition
Partial Result (UConn 2020): The soliton decomposition is preserved by non-KB

Knuth moves, but one KB move changes the soliton decomposition.

Example

Soliton decompositions of the Knuth equivalence class of 362154:

r = 362514
1 4
2 5
3 6

362154
1 4
2 5
6
3

326514
1 4
2 5
6
3

3261541 4
2 5
6
3

321654

1 4
5
6
2
3

KB KB

K1, not KB K2, not KB

KB
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Question: Classify permutations with the same soliton decomposition

326541

1 4
2
5
6
3

362541
1 4
2 5
3
6

365241
1 4
2 5
3
6

365214
1 4
2 5
3
6

635214
1 4
2 5
3
6

635241
1 4
2 5
3
6

632541

1 4
2
5
3
6

r = 632514
1 4
2 5
3
6

632154

1 4
5
2
3
6

KB

K2
K1 K2

K1K2

K1

KB

KB

The Knuth equivalence class of r = 632514, with their soliton decompositions
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The end of part I
Y O U !

A N K
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Inspiration Type A Cambrian poset Bjorner Wachs 1997 Reading 2004

G

Def
The n th Catalan number

is the number of

triangulations of
an 4 27 gon

Catalan objects are

objects that are

counted by the Catalan

numbers

Type As Tamari poset a special case of Cambrian posets








































































































Path algebra

Q quiver e g Q gib
3 kid

I

Def The path algebra HQ
92

basis all paths in Q including the lazy path ei at each vertex i 3 I1

concatenation

multiplication on two basis elements ppl pis if ppl is a path
0 otherwise

KQ I algebra of matrices of the form
e a 0 O

O lb Xe OIii
each Xp elk is the coefficient of the path p

Entry in row i cool j G path from vertex i to vertex j

o o 8 o o f o o o 8 o o o f o o o 08 o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and 3E.g 4.88 818 88 4.8 88 8 884.88 8

path c path b path cb path b path c

88








































































































Modules of the path algebra HQ

A module over an algebra is a generalization of vector space

addition

Instead of multiplication by a
scatortanumber in R or E

multiply by an element of the algebra e.g Zou ka

In type A
M 1,3

Indecomposable modules of the path algebra HQ E g

Jeb
36

L intervals Mci j i Ej called strings
string ab or bat or 23










































































































he Auslander Reiten quiver

The Auslander Reiten quiver of Q is a directed graph to with

vertices indecomposable modules

arrows irreducible morphisms

Auslander Reiten quiver f of Q




























































Barnard G Meehan Schiffler 2019 B GMS 19

A model for ind Q inspired by the Cambrian posets for type A

Line segments 8 i j O fi CI Int s y indecomposable modules Matt j
including boundary segments

Moving one endpoint counterclockwise 4 irreducible morphisms








































































































ri angulations s y

spoton








































































































A new class of modules
HQ path algebra of type A

Classical def T E mod ka is maximal rigid if
T1 T has Qo non isomorphic summands

of vertices of Q
T2 For each pair A B of summands of T called

if 0 B E A O is a short exact sequence then E Bta rigid

Def B GMS 19

T E mod HQ is maximal almost rigid Mar if
M1 T has Qol Q non isomorphic summands

of vertices of Q of arrows of Q

M2 For each pair A B of summands of T called

if O B E A O is a short exact sequence
almost

rigid
then EE BTA or E is indecomposable

Rey M1 can be replaced with

T is maximal with respect to M2








































































































triangulations of PCQ a mar modules
MM BG MS 19 including boundary edges markka

Corollary The mar modules typeA are Catalan objects 58

There is a natural Cambrian poset structure we can put on the man modules

Current future work With 2021 now

Tell a similar story about mar modules for gentle algebras
string algebras and more








































































































C nway C eter frieze pattern 970s

rules each diamond acid satisfies ad be I

only positive integers are allowed

Conway Coxeter frieze patterns are Catalan objects

why
2nd row of a frieze pattern a triangulation of an Gt3 gon
with n non trivial rows








































































































min Zeevinsky cluster algebras 2001

Replace the non trivial integers with Laurent polynomials

y x

The diamond rule still holds e.g Y X 1 7

These five Laurent polynomials are called cluster variables

Def Dynkin diagram of type A2
The type Aatluster algebra is the subring of the field of rational

functions Z x y generated by these five cluster variables
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Def G Muller 2022

Te superunitary regi n of the Az Custer agebra embedded in IR

The five cluster variables

each set to 7,1
x

y

I X

y

Yt I X
x y

II

quiver x Y triangulation y x



















































































Te superunitary regi n of the 3 Custer agebra embedded in IR

The nine cluster variables

each set to 7,1

71 71 71
71 71 71
71 71 71

lilt

x

quiver x x triangulation if2




























min Zeevinsky 2001

Note Dynkin diagram s y cluster algebra A

ABCD EFG of finite type

Thm G Muller 2022

The superunitary region of a finite type cluster algebra is

a topological polytope with the same face structure

as the associated von

Future work

Prove that the superunitary region is contained in the convex hull

of its extreme points
Study the superunitary regions no longer bounded of
infinite type cluster algebras
We used this theorem to give a uniform proof of a conjecture
that there are finitely many positive integral friezes of type
ABCD EFG Can we apply it to other questions




