## Part I: Box-ball systems and Robinson-Schensted-Knuth tableaux

Emily Gunawan, University of Oklahoma,

joint with B. Drucker, E. Garcia, A. Rumbolt, R. Silver (UConn REU 2020)
M. Cofie, O. Fugikawa, M. Stewart, D. Zeng (SUMRY 2021)
S. Hong, M. Li, R. Okonogi-Neth, M. Sapronov, D. Stevanovich, H. Weingord (SUMRY 2022)

Lewis and Clark College
Mathematical Sciences Department Colloquium
February 6, 2023

## Solitary waves (solitons)

Scott Russell's first encounter of solitary waves at the Union Canal:
'I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped-not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.'


Soliton on the Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, July 1995

Credit:
ma.hw.ac.uk/solitons/press.html
(Desmos link by D. Zeng)


## Multicolor box-ball system (BBS), Takahashi 1993

A box-ball system (BBS) is a dynamical system of BBS configurations.

- At each configuration, balls are labeled by numbers 1 through $n$ in an infinite strip of boxes.
- Each box can fit at most one ball.


## Example

A possible BBS configuration:

$\cdots$| 4 | 5 | 2 | 3 | 6 | 1 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Box-ball move (from $t=0$ to $t=1$ )

Balls take turns jumping to the first empty box to the right, starting with the smallest-numbered ball.

| $t=0$ | 4 | 5 | 2 | 3 | 6 |  | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 5 | 2 | 3 | 6 |  |  | 1 |  |  |
|  | 4 | 5 |  | 3 | 6 |  | 2 | 1 |  |  |
|  | 4 | 5 |  |  | 6 |  | 2 | 1 | 3 |  |
|  |  | 5 | 4 |  | 6 |  | 2 | 1 | 3 |  |
|  |  |  | 4 | 5 | 6 |  | 2 | 1 | 3 |  |
| $t=1$ |  |  | 4 | 5 |  |  | 2 | 1 | 3 | 6 |

Box-ball moves $(t=0$ through $t=5)$

| $t=0$ | 4 | 5 | 2 | 3 | 6 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t=1$ |  |  | 4 | 5 |  |  | 2 | 1 | 3 |  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t=2$ |  |  |  |  | 4 |  | 5 | 2 |  |  |  | 1 | 3 | 6 |  |  |  |  |  |  |  |  |  |  |
| $t=3$ |  |  |  |  |  |  |  | 4 | 2 |  | 5 |  |  |  |  |  | 3 | 6 |  |  |  |  |  |  |
| $t=4$ |  |  |  |  |  |  |  |  | 4 |  |  |  | 5 |  |  |  |  |  | 1 | 3 | 6 |  |  |  |
| $t=5$ |  |  |  |  |  |  |  |  |  |  | 4 |  |  | 2 |  | 5 |  |  |  |  |  | 1 | 3 | 6 |

## Solitons and steady state

## Definition

A soliton of a box-ball system is an increasing run of balls that moves at a speed equal to its length and is preserved by all future BBS moves.

## Example

The strings 4, 25, and 136 are solitons:

| $t=3$ |  |  |  |  |  | 4 |  |  | 5 |  |  |  | 1 | 3 | 6 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 4 |  | 2 | 5 |  |  |  |  | 1 | 3 | 6 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t=5$ |  |  |  |  |  |  |  |  | 4 |  |  | 2 | 5 |  |  |  |  |  | 1 | 3 | 6 |

After a finite number of BBS moves, the system reaches a steady state where:

- the system is decomposed into solitons, i.e., each ball belongs to one soliton
- the lengths of the solitons are weakly decreasing from right to left


## Tableaux (English notation)

## Definition

- A tableau is an arrangement of numbers $\{1,2, \ldots, n\}$ into rows whose lengths are weakly decreasing.
- A tableau is standard if its rows and columns are increasing.


## Example

Standard Tableaux: | 1 | 2 | 4 |
| :---: | :---: | :---: |
| 3 | 5 |  |
| 6 | 7 | 7 |

| 1 | 3 | 6 |
| :--- | :--- | :--- |
| 2 | 5 |  |
| 4 |  |  |
|  |  |  |
|  |  |  |


| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 7 |  |
| 5 | 8 |  |
| 6 |  |  |
|  |  |  |

Nonstandard Tableau:

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 5 | 6 | 7 |
| 4 |  |  |
|  |  |  |

## Soliton decomposition

## Definition

- Let $S_{n}$ be the symmetric group on $n$ elements. Represent permutations of $S_{n}$ in one-line notation as

$$
w=w(1) w(2) \cdots w(n), \text { e.g. } w=452361
$$

- To construct soliton decomposition $\mathrm{SD}(w)$ of $w$, start with the one-line notation of $w$, and run BBS moves until we rearch a steady state; the 1st row of $\mathrm{SD}(w)$ is the rightmost soliton, the 2nd row of $\mathrm{SD}(w)$ is the next rightmost soliton, and so on.

Example

$$
t=3
$$

$\square$

$$
t=4
$$

|  |  |  |  |  |  |  | 4 |  | 2 | 5 |  |  |  |  | 1 | 3 | 6 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & & \text { with shape }(3,2,1) . .
\end{array}
$$

## RSK bijection

The Robinson-Schensted-Knuth (RSK) insertion algorithm is a bijection

$$
w \mapsto(\mathrm{P}(w), \mathrm{Q}(w))
$$

from $S_{n}$ onto pairs of size- $n$ standard tableaux of equal shape.

## Example



## RSK bijection example

Let $w=452361$.

|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}:$ | 4 | 4 | 5 | 2 | 5 | 2 | 3 | 2 | 3 | 6 | $\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}$ |
| 4 |  | 4 | 5 | 4 | 5 |  | 5 |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |

Q : $1 \begin{array}{lll} & 1 & 2\end{array}$

| 1 | 2 |
| :--- | :--- |
| 3 |  |

$\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$

| 1 | 2 |
| :--- | :--- |
| 3 | 4 |

$\begin{array}{lll}1 & 2 & 5 \\ 3 & 4 & \\ 6 & & \end{array}$

$$
\mathrm{Q}(w)=
$$

## Insertion and bumping rule for P

- Insert $x$ into the first row of P .
- If $x$ is larger than every element in the first row, add $x$ to the end of the first row.
- If not, replace the smallest number larger than $x$ in row 1 with $x$. Insert this number into the row below following the same rules.


## Recording rule for Q

For Q , insert $1, \ldots, n$ in order so that the shape of Q at each step matches the shape of P .

## The Q tableau determines the dynamics of a box-ball system

 Theorem (SUMRY 2021)If $\mathrm{Q}(v)=\mathrm{Q}(w)$, then the box-ball systems of $v$ and $w$ are identical if we ignore the ball labels, in particular:

- $v$ and $w$ first reach steady state at the same time, and
- the soliton decompositions of $v$ and $w$ have the same shape

Example

$$
\begin{aligned}
& v=21435 \text { and } w=31425 \\
& \mathrm{Q}(v)=\mathrm{Q}(w)=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array}
\end{aligned}
$$

Both $v$ and $w$ first reach steady state at $t=1$.

## Questions (steady-state time)

The time when a permutation $w$ first reaches steady state is called the steady-state time of $w$.

- Given a Q-tableau, find a formula to compute the steady-state time for all permutations in the Q-tableau class.
- Find an upper bound for steady-state time.


## L-shaped soliton decompositions

## Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition $\mathrm{SD}=\square$, then its steady-state time is either $t=0$ or $t=1$.

## Example

Such permutations include noncrossing involutions and column reading words of standard tableaux.

Both $v=21435$ and $w=31425$ have steady-state time $t=1$.

$$
\mathrm{SD}(v)=\begin{array}{|l|l|ll}
\hline & 3 & 5 \\
\hline 4 & & & \\
\hline 2 & & \mathrm{SD}(w)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 4 & & \\
\hline 3 & & \\
\hline
\end{array} & \\
\hline
\end{array}
$$

$v=21435=(12)(34)$ and $w=31425$ is the column reading word of | 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 |  |.

## Maximum steady-state time

Theorem (UConn 2020)
If $n \geq 5$ and

$$
\mathrm{Q}(w)=
$$

then the steady-state time of $w$ is $n-3$.

## Conjecture

For $n \geq 4$, the steady-state time of a permutation in $S_{n}$ is at most $n-3$.

Box-Ball System Example $(t=0$ through 5)

Let $w=452361$. Then $\mathrm{Q}(w)=$| 1 | 2 | 5 |
| :--- | :--- | :--- |
| 3 | 4 |  |
| 6 |  |  | and the steady-state time of $w$ is $3=n-3$.

| $t=0$ | 4 | 5 | 2 | 3 | 6 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t=1$ |  |  | 4 | 5 |  | 2 | 1 |  | 3 | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $t=2$ |  |  |  |  | 4 | 5 | 2 |  |  |  | 1 | 3 | 6 |  |  |  |  |  |  |  |  |  |  |
| $t=3$ |  |  |  |  |  |  | 4 |  | 2 | 5 |  |  |  |  | 1 | 3 | 6 |  |  |  |  |  |  |
| $t=4$ |  |  |  |  |  |  |  |  | 4 |  | 2 | 5 |  |  |  |  |  | 1 | 3 | 6 |  |  |  |
| $t=5$ |  |  |  |  |  |  |  |  |  | 4 |  |  | 2 |  | 5 |  |  |  |  |  | 1 | 3 | 6 |

## Questions (soliton decomposition)

- When is the soliton decomposition SD a standard tableau?
- Can we classify permutations with standard SD using pattern avoidance?
- Classify the permutations with the same soliton decompositions


## When is $\mathrm{SD}(\mathrm{w})$ a standard tableau?

Example

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
2 & 5 & \mathrm{SD}(21435)=\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 4 & & & \mathrm{SD}(31425)=\begin{array}{|l|l|}
\hline 1 & 2
\end{array} \\
\hline 4 & & \\
\hline 3 & \\
\hline
\end{array} \\
\hline
\end{array}
$$

Theorem (UConn $2020+$ D. Grinberg)
Given a permutation $w$, the following are equivalent:

1. $\mathrm{SD}(w)$ is standard
2. $\mathrm{SD}(w)=\mathrm{P}(w)$
3. the shape of $\mathrm{SD}(w)$ is equal to the shape of $\mathrm{P}(w)$

## Definition

We say that a permutation $w$ is $B B S$-good (or "good" for short) if the tableau $\mathrm{SD}(w)$ is standard.

## $\mathrm{Q}(w)$ determines whether $w$ is good

## Proposition

Given a standard tableau $T$, either

$$
\mathrm{SD}(w) \text { is standard for all } w \text { such that } \mathrm{Q}(w)=T
$$

or

$$
\mathrm{SD}(w) \text { is not standard for all } w \text { such that } \mathrm{Q}(w)=T \text {. }
$$

## Definition (good tableaux)

A standard tableau $T$ is good if each permutation whose Q tableau equals $T$ is good.

- Question: How many good tableaux are there?


## Answer: Good tableaux are counted by the Motzkin numbers!

## Work in preparation (SUMRY 2022)

The good standard tableaux, $\left\{\mathrm{Q}(w) \mid w \in S_{n}\right.$ and $\mathrm{SD}(w)$ is standard $\}$, are counted by the Motzkin numbers:

$$
M_{0}=1, \quad M_{n}=M_{n-1}+\sum_{i=0}^{n-2} M_{i} M_{n-2-i}
$$



$$
n=3
$$

The first few Motzkin numbers are $1,1,2,4,9,21,51,127,323,835$.

Future: Characterize good permutations using pattern avoidance (Skipped slide)
A pattern $v$ is a consecutive pattern of a permutation $w$ if $w$ has a consecutive subsequence whose elements are in the same relative order as $v$. Otherwise, $w$ avoids $v$.

- $w=314592687$ contains $v=2413$ because the subsequence 5926 is ordered in the same way as 2413
- $w=314592687$ avoids $v=321$ because 314592687 has no consecutive subsequence ordered in the same way as 321 .
(Remark: 314592687 contains a non-consecutive subsequence with pattern 321. What is this subsequence?)

Further question: Come up with a statement "a permutation is good iff it avoids the consecutive patterns ..."

## Knuth moves

(skipped slide)

- A Knuth move between two $v, w \in S_{n}$ is the act of swapping consecutive entries

$$
\begin{array}{ll}
y x z \text { and } y z x & \text { (Knuth move of the first kind) or } \\
x z y \text { and } z x y & \text { (Knuth move of the second kind) }
\end{array}
$$

where $x<y<z$, or

$$
y_{1} x z y_{2} \text { and } y_{1} z x y_{2} \quad \text { (Knuth move of both kinds }\left(K_{B}\right) \text { ) }
$$

where $x<y_{1}, y_{2}<z$.

- We say $v$ and $w$ are Knuth equivalent if they differ by a sequence of Knuth moves.


## Example

$$
326514 \sim^{K_{2}} 326154 \quad 326154 \sim^{K_{1}} 362154 \quad 362154 \sim^{K_{B}} 362514
$$

## $P$-tableaux and Knuth moves

(skipped slide)

Theorem (Knuth, 1970)

- There is a path of Knuth moves from $w$ to the row reading word of $P(w)$.
- Two permutations have the same $P$ tableau iff they are in the same Knuth equivalence class.


## Example

| The Knuth equivalence class of the row reading word $r=362514$ of1 4 <br> 2 5 <br> 3 6 <br> $\qquad$ $r=362514$ |
| :--- |



## Future: Classify permutations with the same soliton decomposition

Partial Result (ECon 2020): The soliton decomposition is preserved by non- $K_{B}$ Knuth moves, but one $K_{B}$ move changes the soliton decomposition.

## Example

Soliton decompositions of the Knuth equivalence class of 362154:

(Skipped slide)

Question: Classify permutations with the same soliton decomposition


The Knuth equivalence class of $r=632514$, with their soliton decompositions

The end of part I

| $Y$ | $O$ | $U$ | $!$ |
| :---: | :---: | :---: | :---: |
| $A$ | $N$ | $K$ |  |
| $T$ | $H$ |  |  |
|  |  |  |  |



# Part II: Algebraic combinatorics inspired by Catalan objects 

Emily Gunawan, University of Oklahoma, joint with G. Muller (on cluster algebras, 2020-present),
E. Barnard, E. Meehan, R. Schiffler (on type A quivers and Cambrian posets, 2018-2021), E. Barnard, R. Coelho Simões, R. Schiffler (on more general quivers, 2021-present)

Lewis and Clark College
Mathematical Sciences Department Colloquium
February 6, 2023

Inspiration: Type A Cambrian poset (Björner-Wachs 1997, Reading 2004)


Def
The $n$-th Catalan number
is the number of triangulations of an $(n+2)$-go

Catalan objects are objects that are counted by the Catalan numbers.

Type $A_{2}$ Tamari poset (a special case of Cambrian posets)

Path algebra :
$Q$ quiver e.g. $Q={ }^{\prime} \searrow_{2} b^{b^{2}}, \quad \mathbb{k}:=\mathbb{C}$
Def The path algebra $\mathbb{K} Q$

- basis: \{all paths in $Q_{\text {, including the lazy path }} e_{i}$ at each vertex $\left.i\right\}=\left\{\begin{array}{lll}e_{1} & a & \\ & e_{2} & \\ b, & e_{3}, \\ c b & c & e_{4}\end{array}\right\}$
concatenation
- multiplication on two basis elements: $P P^{\prime}=\left\{\begin{array}{cl}P P^{\prime} & \text { if } P P^{\prime} \text { is a path } \\ 0 & \text { otherwise }\end{array}\right.$
$\mathbb{K} Q \cong$ algebra of matrices of the form
$\left[\begin{array}{c|c|c|c}\lambda e_{1} & \lambda_{a} & 0 & 0 \\ \hline 0 & \lambda e_{2} & 0 & 0 \\ \hline 0 & \lambda_{b} & \lambda e_{3} & 0 \\ \hline 0 & \lambda_{c b} & \lambda & \lambda e_{4}\end{array}\right]$.
each $\lambda_{p} \in \mathbb{K}$ is the coefficient of the path $p$.
Entry in row $i$, col $j \longleftrightarrow$ path from vertex $i$ to vertex $j$.

$3\left[\begin{array}{c|c|c|c}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & \lambda_{b} & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right] 4\left[\begin{array}{ll|l|l|l}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & \lambda_{c} & 0\end{array}\right]=\left[\begin{array}{ll|l|l|}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]$
path $c$ path $b$ path $c b$
path $b$ path $c$

Modules of the path algebra $\mathbb{K} Q$

A module over an algebra is a generalization of vector space

- addition
- Instead of multiplication by a scalar (a number in $\mathbb{R}$ or $\mathbb{C}$ ), multiply by an element of the algebra (e.g. $\mathbb{Z}$ or $\mathbb{K Q}$ )

In type A...
"Indecomposable" modules of the path algebra $\mathbb{K} Q$ $\longleftrightarrow$ intervals $M(i, j), i \leqslant j$ called "strings"

string $a b^{-1}$ (or $b a^{-1}$ or $2^{3}$ )

The Auslander-Reiten quiver

The Auslander - Reiten quiver of $Q$ is a directed graph $\Gamma_{Q}$ with
vertices: indecomposable modules arrows: "irreducible morphisms"

$$
Q=\stackrel{v_{1}}{v_{2}} \longleftrightarrow{ }^{v_{3}} \longrightarrow v_{4}
$$

Auslander-Reiten quiver $\Gamma_{Q}$ of $Q$ :


Barnard - Go - Meehan - Schiffler, 2019 [BGMS 19]
A model for ind $Q$ inspired by the Cambrian posets (for type A)
$\left\{\begin{array}{l}\text { Line segments } \gamma(i, j), 0 \leq i<j \leq n+1 \\ \text { (including boundary segments) }\end{array}\right\} \longleftrightarrow$ indecomposable modules $M(i+1, j)$
Moving one endpoint counter clockwise $\longleftrightarrow$ irreducible morphisms


Triangulations



A new class of modules
$\mathbb{K} Q$ : path algebra of type $A$
Classical def $T \in \bmod (\mathbb{K} Q)$ is maximal rigid if
( $T_{1}$ ) $T$ has $\left|Q_{0}\right|$ non-isomorphic summands

$$
\text { \# of vertices of } Q
$$

(T2) For each pair $A, B$ of summands of $T$,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0$ is a short exact sequence, then $E \cong B \oplus A\} \underline{\text { rigid }}$
Def [BGMS 19]
$T \in \bmod (\mathbb{K} Q)$ is maximal almost rigid (mar) if
(Mi) $T$ has $\left|Q_{0}\right|+\left|Q_{1}\right|$ non-isomorphic summands \# of vertices of $Q$ \# of arrows of $Q$
(M2) For each pair $A, B$ of summands of $T$, called $\left.\begin{array}{l}\text { if } 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow 0 \text { is a short exact sequence, } \\ \text { then } E \cong B \oplus A \text { or } E \text { is indecomposable }\end{array}\right\} \frac{\text { rigid }}{}$
Rem (M1) can be replaced with:
" $T$ is maximal with respect to (M2)"
$\underline{T h m}\left[B G M S\right.$ 19] $\begin{array}{c}\left\{\begin{array}{l}\text { triangulations of } \\ \text { including boundary edges }\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { mar modules } \\ \text { mar( }(\mathbb{R} Q)\end{array}\right\}\end{array}$

Corollary The mar modules (type A) are Catalan objects

There is a natural Cambrian poset structure we can put on the mar modules


Current \& future work [With E. Barnard, R. Coelho Simões, R. Schiffler 2021 -now] Tell a similar story about mar modules for "gentle algebras", "string algebras", and more.

Conway-Coxeter frieze pattern (1970s)

$$
\left.\begin{array}{llllllllllll}
\cdots & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots & & 1
\end{array}\right)
$$

rules: -each diamond $a_{c}^{b} d$ satisfies $a d-b c=1$
-only positive integers are allowed

* Conway-Coxeter frieze patterns are Catalan objects!

Why?
2nd row of a frieze pattern $\longleftrightarrow$ triangulation of an $(n+3)$-gan with $n$ non-trivial rows

Fomin-Zelevinsky cluster algebras (2001)

* Replace the non-trivial integers with Laurent polynomials:

$$
\begin{aligned}
& \begin{array}{lllllll}
\cdots & 1 & 1 & 1 &
\end{array} \\
& \begin{array}{lllll}
\frac{x+y+1}{x y} & x & \frac{y+1}{x} & \frac{x+1}{y} & y
\end{array} \frac{x+y+1}{x y} \\
& \begin{array}{llll}
\cdots & \frac{x+1}{y} & y & \frac{x+y+1}{x y}
\end{array} x \quad \frac{y+1}{x} \quad \ldots \\
& \begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

* The diamond rule still holds, e.g. $\frac{x+1}{y} \cdot y-x \cdot 1=1$
* These five Laurent polynomials are called cluster variables.
*"Def"
Dynkin diagram of type $A_{2}: \cdots$
The type $A_{2}$ cluster algebra is the subring of the field of rational functions $\mathbb{Z}(x, y)$ generated by these five cluster variables
"Def" [G .-Muller 2022]
The superunitary region of the $A_{2}$ cluster algebra, embedded in $\mathbb{R}^{2}$

The five cluster variables, each set to $\geqslant 1$ :

- $x$
- y
- $\frac{1+x}{y}$
- $\frac{y+1+x}{x y}$
- $\frac{1+y}{x}$

quiver: $x \rightarrow y$ \& triangulation:


The superunitary region of the $A_{3}$ cluster algebra, embedded in $\mathbb{R}^{3}$

The nine cluster variables, each set to $\geqslant 1$ :

$$
\begin{array}{ccc}
x_{1} \geqslant 1 & x_{2} \geqslant 1 & x_{3} \geqslant 1 \\
\frac{x_{2}+x_{3}}{x_{1}} \geqslant 1 & \frac{x_{1}+x_{3}}{x_{2}} \geqslant 1 & \frac{x_{1}+x_{2}}{x_{3}} \geqslant 1 \\
\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2}} \geqslant 1 & \frac{x_{1}+x_{2}+x_{3}}{x_{2} x_{3}} \geqslant 1 & \frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{3}} \geqslant 1
\end{array}
$$


quiver:

\& triangulation:

[Fomin-Zelevinsky 2001]
Note: $\triangle$ Dynkin diagram
$A B C D E F G$
$\longleftrightarrow$ cluster algebra $A$ of finite type $\triangle$

Tho [G .-Muller 2022]
The superunitary region of a finite type cluster algebra is a topological polytope with the same face structure as the associahedron

Future work:

* Prove that the super unitary region is contained in the convex hull of its extreme points
* Study the superunitary regions (no longer bounded) of infinite type cluster algebras
* We used this theorem to give a uniform proof of a conjecture that there are finitely many positive integral friezes of type ABCDEFG. Can we apply it to other questions?


