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Permutations

Let Sn denote the set of permutations on the numbers {1, . . . , n}.

We will represent permutations in two ways,

I in two-line notation, as

✓
1 2 . . . n

w(1) w(2) . . . w(n)

◆
, and

I in one-line notation, as w = w(1)w(2) · · ·w(n) 2 Sn.

Example

A permutation in S5

I in two-line notation:

✓
1 2 3 4 5
2 1 4 3 5

◆
, and

I in one-line notation: 21435
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Solitary waves (solitons)

Scott Russell’s first encounter (August 1834)

“I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped.

[The mass of water in the channel] rolled
forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued
its course along the channel apparently without
change of form or diminution of speed.

I followed it on horseback, ... and after a chase
of one or two miles I lost it in the windings of
the channel.”

Soliton on the Scott
Russell Aqueduct on
the Union Canal
(July 1995)

(ma.hw.ac.uk/solitons/press.html)

Two soliton animation: www.desmos.com/calculator/86loplpajr
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(Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball

configurations.

I At each configuration, balls are labeled by numbers 1
through n in an infinite strip of boxes.

I Each box can fit at most one ball.

Example

A possible box-ball configuration:

· · · 4 5 2 3 6 1 · · ·
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Box-ball move (from t = 0 to t = 1)

Balls take turns jumping to the first empty box to the right,

starting with the smallest-numbered ball.

t = 0 · · · 4 5 2 3 6 1 · · ·

· · · 4 5 2 3 6 1 · · ·

· · · 4 5 3 6 2 1 · · ·

· · · 4 5 6 2 1 3 · · ·

· · · 5 4 6 2 1 3 · · ·

· · · 4 5 6 2 1 3 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·
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Box-ball moves (t = 0 through t = 5)

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Solitons and steady state

Definition

A soliton of a box-ball system is an increasing run of balls that moves
at a speed equal to its length and is preserved by all future box-ball
moves.

Example

The strings 4, 25, and 136 are solitons:

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·

After a finite number of box-ball moves, the system reaches a steady
state where:

I each ball belongs to one soliton

I the lengths of the solitons are weakly decreasing from right to left
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Question (steady-state time)

The time when a permutation w first reaches steady state is

called the steady-state time of w.

I Find a formula to compute the steady-state time of a

permutation, without needing to run box-ball moves.
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Tableaux (English notation)

Definition

I A tableau is an arrangement of numbers {1, 2, ..., n} into

rows whose lengths are weakly decreasing.

I A tableau is standard if its rows and columns are increasing.

Example

Standard Tableaux:

1 2 4

3 5

6 7

1 3 6

2 5

4

1 3 4

2 7

5 8

6

Nonstandard Tableau:

1 2 3

5 6 7

4
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Soliton decomposition
Definition

To construct soliton decomposition SD(w) of w, start with the

one-line notation of w, and run box-ball moves until we reach a

steady state; the 1st row of SD(w) is the rightmost soliton, the

2nd row of SD(w) is the next rightmost soliton, and so on.

Example

t = 0 · · · 4 5 2 3 6 1 · · ·
t = 1 · · · 4 5 2 1 3 6 · · ·
t = 2 · · · 4 5 2 1 3 6 · · ·
t = 3 · · · 4 2 5 1 3 6 · · ·
t = 4 · · · 4 2 5 1 3 6 · · ·

SD(452361) =
1 3 6
2 5
4

with shape (3, 2, 1).
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RSK bijection

The classical Robinson–Schensted–Knuth (RSK) insertion

algorithm is a bijection

w 7! (P(w),Q(w))

from Sn onto pairs of size-n standard tableaux of equal shape.

Example

Let w = 452361. Then

P(w) =
1 3 6
2 5
4

and Q(w) =
1 2 5
3 4
6

.
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RSK bijection example
Let w = 452361.

P : 4 4 5
2 5
4

2 3
4 5

2 3 6
4 5

1 3 6
2 5
4

P(w) =
1 3 6
2 5
4

Q : 1 1 2
1 2
3

1 2
3 4

1 2 5
3 4

1 2 5
3 4
6

Q(w) =
1 2 5
3 4
6

Insertion and bumping rule for P

I Insert x into the first row of P.

I If x is larger than every element in the first row, add x to the end
of the first row.

I If not, replace the smallest number larger than x in row 1 with x.
Insert this number into the row below following the same rules.

Recording rule for Q
For Q, insert 1, . . . , n in order so that the shape of Q at each step
matches the shape of P.
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Q(w) determines the box-ball dynamics of w

Theorem (SUMRY 2021)

If Q(v) = Q(w), then

I v and w first reach steady state at the same time, and

I the soliton decompositions of v and w have the same shape

Example v = 21435 and w = 31425

Q(v) = Q(w) =
1 3 5
2 4

Both v and w have steady-state time t = 1

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3
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Questions (steady-state time)

Two permutations are said to be Q-equivalent if they have

the same Q-tableau.

I Given a Q-tableau, find a formula to compute the

steady-state time for all permutations in this Q-tableau

equivalence class.

I Find an upper bound for steady-state times of all

permutations in Sn.
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L-shaped soliton decompositions
Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition

1 . . .

...

,

then its steady-state time is either t = 0 or t = 1.

Remark

Such permutations include “noncrossing involutions" and “column

words" of standard tableaux.

Example

Both v = 21435 and w = 31425 have steady-state time t = 1.

SD(v) =
1 3 5
4
2

SD(w) =
1 2 5
4
3

v = (12)(34) and w = 31425 is the column word of
1 2 5
3 4

.
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Maximum steady-state time

Theorem (UConn 2020)

If n � 5 and

Q(w) =

1 2 . . . n� 2 n� 1

3 4

n

,

then the steady-state time of w is n� 3.

Conjecture

For n � 4, the steady-state time of a permutation in Sn is at

most n� 3.
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A permutation with steady-state time n� 3

Let w = 452361 2 S6. Then Q(w) =
1 2 5
3 4
6

and the steady-state time

of w is 3 = n� 3.

t = 0 · · · 4 5 2 3 6 1 · · ·

t = 1 · · · 4 5 2 1 3 6 · · ·

t = 2 · · · 4 5 2 1 3 6 · · ·

t = 3 · · · 4 2 5 1 3 6 · · ·

t = 4 · · · 4 2 5 1 3 6 · · ·

t = 5 · · · 4 2 5 1 3 6 · · ·
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Questions (soliton decomposition)

I When is the soliton decomposition SD a standard

tableau?

I Characterize the permutations with the same soliton

decompositions
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When is SD(w) a standard tableau?

Example

SD(452361) =
1 3 6
2 5
4

SD(21435) =
1 3 5
4
2

SD(31425) =
1 2 5
4
3

Theorem (UConn 2020 + D. Grinberg)

Given a permutation w, the following are equivalent:

1. SD(w) is standard

2. SD(w) = P(w)

3. the shape of SD(w) is equal to the shape of P(w)

Definition (good permutations)

We say that a permutation w is good if the tableau SD(w) is standard.

17 / 20






































































































Q(w) determines whether w is good

Proposition

Given a standard tableau T , either

All w such that Q(w) = T are good,

or

All w such that Q(w) = T are not good.

Definition (good tableaux)

A standard tableau T is good if T = Q(w) and w is good.

I Question: How many good tableaux are there?
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Answer: Good tableaux are new Motzkin objects!

Theorem (SUMRY 2022)

The good standard tableaux, {Q(w) | w 2 Sn and SD(w) is standard},
are counted by the Motzkin numbers:

M0 = 1, Mn = Mn�1 +
n�2X

i=0

MiMn�2�i

M3 = 4

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Further question: Characterize permutations with the
same soliton decomposition

326541

1 4
2
5
6
3

362541
1 4
2 5
3
6

365241
1 4
2 5
3
6

365214
1 4
2 5
3
6

635214
1 4
2 5
3
6

635241
1 4
2 5
3
6

632541

1 4
2
5
3
6

r = 632514
1 4
2 5
3
6

632154

1 4
5
2
3
6

KB

K2
K1 K2

K1K2

K1

KB

KB

Permutations connected by Knuth moves to r = 632514 and

their soliton decompositions
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The end of part I

Y O U !

A N K

T H






































































































Knuth moves

I A Knuth move between two v, w 2 Sn is the act of swapping
consecutive entries

yxz and yzx (Knuth move of the first kind) or

xzy and zxy (Knuth move of the second kind)

where x < y < z, or

y1xzy2 and y1zxy2 (Knuth move of both kinds (KB))

where x < y1, y2 < z.

I We say v and w are Knuth equivalent if they differ by a sequence
of Knuth moves.

Example

326514 ⇠K2 326154 326154 ⇠K1 362154 362154 ⇠KB 362514






































































































P-tableaux and Knuth moves
Theorem (Knuth, 1970)

I There is a path of Knuth moves from w to the row reading word of
P(w).

I Two permutations have the same P tableau iff they are in the
same Knuth equivalence class.

Example

The Knuth equivalence class of the row reading word r = 362514 of
1 4
2 5
3 6

:
r = 362514

362154 326514

326154

321654

KB KB

K1, not KB K2, not KB

KB






































































































Future: Characterize permutations with the same soliton
decomposition

Partial Result (UConn 2020): The soliton decomposition is

preserved by non-KB Knuth moves, but one KB move changes

the soliton decomposition.

Example

Soliton decompositions of the Knuth equivalence class of 362154:

r = 362514
1 4
2 5
3 6

362154
1 4
2 5
6
3

326514
1 4
2 5
6
3

3261541 4
2 5
6
3

321654

1 4
5
6
2
3

KB KB

K1, not KB K2, not KB

KB






































































































Examples: permutations with L-shaped SD
A permutation with L-shaped SD which is not a column

reading word:

w = 3217654 = (13)(47)(56) is a noncrossing involution.

P(w) = Q(w) =

1 4
2 5
3 6
7

and SD(w) =

1 4
5
6
7
2
3

An involution which is neither noncrossing nor a column

reading word:

v = 5274163 = (15)(37) has a crossing.

P(v) = Q(v) =
1 3 6
2 4
5 7

and SD(v) =

1 3 6
4
2
7
5






































































































Permutations connected by KB moves having the same SD

Two permutations with the same SD which are connected by KB

moves:

r = 35124 SD(r) = 1 2 4
3 5

31524SD =
1 2 4
5
3

31254SD =
1 2 4
5
3

13254SD =
1 2 4
5
3

w = 13524 SD(w) = 1 2 4
3 5

KB

K2, not K1

K2, not K1

KB






































































































Future: Characterize good permutations using pattern
avoidance

A pattern v is a consecutive pattern of a permutation w if w has

a consecutive subsequence whose elements are in the same

relative order as v. Otherwise, w avoids v.

I w = 314592687 contains v = 2413 because the subsequence

5926 is ordered in the same way as 2413

I w = 314592687 avoids v = 321 because 314592687 has no

consecutive subsequence ordered in the same way as 321.
(Remark: 314592687 contains a non-consecutive subsequence

with pattern 321. What is this subsequence?)

Further question: Come up with a statement “a permutation is

good iff it avoids the consecutive patterns ...”
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Inspiration Type A 7 map Bjorner Wachs 1997 Reading 2004

Surjection 7 53 s triangulations of








































































































Inspiration Type A 7 map Bjorner Wachs 1997 Reading 2004

Surjection 7 53 s triangulations of

re e

and
at

231 312
732

213

1.23








































































































Inspiration Type A 7 map Bjorner Wachs 1997 Reading 2004

Given a quiver Q which is an orientation of us V2 Utz

divettedgraph the typettynkindiagram
we construct polygon P Q with vertices 0 1,2 nt2 from left to right

upper barred
0 vertices i nt2 Vi i fitvia the rule

Vit Vi i
EEetaryed

01 4 23 in 12

I J T 5
Ex PCQ Z

Z

n general we have a surjection M Sm s triangulations of PCQ








































































































luiver representations

Q quiver ex kid

A representation M of Q is assigning
a finite dimensional Ik vector space t each vertex of Q
a k linear map for each arrow of Q

M

Fact

If Q is an orientation of the type A

0 KDynkin diagram ha s
k Ik

Indecomposable representations of Q

Ex M 2,4 34
intervals i itt j it is jentz










































































































he Auslander Reiten quiver
The Auslander Reiten quiver of Q is a directed graph to with

vertices indecomposable representations

arrows irreducible morphisms
Auslander Reiten quiver f of Q

t ae




























































Barnard G Meehan Schiffler 2019 B GMS 19

A model for the AR quiver inspired by the 7 map for type A

Line segments 8 i j L indecomposable representations Mitt j

Moving one endpoint counterclockwise 4 irreducible morphisms
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new lass of quiver representations

Def B GMS 19

Let Q be a type A quiver
A representation T of Q is maximal almost rigid Mar if

1 T has vertices of Q arrows of Q non isomorphic summands

2 For each pair A B of summands of T called

if O B E A O is a short exact sequence
almost

rigid
then EE BTA or E is indecomposable

Remark Condition 1 can be replaced with

T is maximal with respect to 2








































































































ri angulations s y

AM BG MS 19

triangulations of PCQ I mar representations of Q typeA

Def
The n th Catalannumber is the number of triangulations of the na gon

Corollary
The mar representations are counted by the Catalan numbers

Current future work with

Tell similar stories about mar objects in the setting of
gentle quivers with relations string quivers with relations and more






















































Jartial order on the mar representations

AM BG MS 19

Weput a natural Cambrian poset structure on the mar representations of Q
_________________________ a

carventeffreworkwitt
Tell similar stories about mar objects in the setting of
gentle quivers with relations string quivers with relations and more




