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Permutations

Let S,, denote the set of permutations on the numbers {1,...

We will represent permutations in two ways,

» in two-line notation, as

(w%l) wé) . w%) and

» in one-line notation, as w = w(L)w(2) - -w(n) € Sy,.

Example

A permutation in Ss

1 2 3 4 5
> 1 _
in two-line notation: (2 | 4 3 5), and

» in one-line notation: 21435
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Solitary waves (solitons)

Scott Russell’s first encounter (August 1834)

“I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped.
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|The mass of water in the channel| rolled

forward with great velocity, assuming the form Soliton on the Scott
of a large solitary elevation, a rounded, smooth Russell Aqueduct on
and well-defined heap of water, which continued the Union Canal

its course along the channel apparently without (July 1995)
change of form or diminution of speed.
(ma.hw.ac.uk/solitons/press.html)
I followed it on horseback, ... and after a chase
of one or two miles I lost it in the windings of
the channel.”

Two soliton animation: www.desmos.com /calculator/86loplpajr
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http://www.ma.hw.ac.uk/solitons/press.html
https://www.desmos.com/calculator/86loplpajr

(Multicolor) box-ball system, Takahashi 1993

A box-ball system is a dynamical system of box-ball
configurations.

» At each configuration, balls are labeled by numbers 1
through n in an infinite strip of boxes.

» Fach box can fit at most one ball.

Example

A possible box-ball configuration:

| 4

5

3

6

1
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Box-ball move (from ¢t =0tot = 1)

Balls take turns jumping to the first empty box to the right,
starting with the smallest-numbered ball.

t=20
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Box-ball moves (¢t = 0 through t = 5)

t=1 415 1(3|6

t =2 415 1(3|6

t =3 4 5] 1(3|6

t =4 4 5] 1136
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Solitons and steady state

Definition
A soliton of a box-ball system is an increasing run of balls that moves
at a speed equal to its length and is preserved by all future box-ball

1maoves.

Example
The strings 4, 25, and 136 are solitons:

t=3--- 4 5] 1136
t =4 4 5] 1136
t=5 ... 4 5 113161 --

After a finite number of box-ball moves, the system reaches a steady
state where:

» each ball belongs to one soliton

» the lengths of the solitons are weakly decreasing from right to left
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Question (steady-state time)

The time when a permutation w first reaches steady state is
called the steady-state time of w.

» Find a formula to compute the steady-state time of a
permutation, without needing to run box-ball moves.
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Tableaux (English notation)

Definition

» A tableau is an arrangement of numbers {1, 2,...,n} into
rows whose lengths are weakly decreasing.

» A tableau is standard if its rows and columns are increasing.

Example
11214 1136 ; :; 4
Standard Tableaux: 5) H
6|7 4 0|8
§
11213
Nonstandard Tableau: |5 |6 | 7
4
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Soliton decomposition

Definition

To construct soliton decomposition SD(w) of w, start with the
one-line notation of w, and run box-ball moves until we reach a
steady state; the 1st row of SD(w) is the rightmost soliton, the
2nd row of SD(w) is the next rightmost soliton, and so on.

Example

t=0 ---14|5 316|1

t=1 -.- 4195 136

t=2 --- 495 136

t=3 - 4 o 1{3|6

t=4 --- 4 5 1136
1136

SD(452361) = |2|5| with shape (3,2,1).

4
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RSK bijection

The classical Robinson—Schensted—-Knuth (RSK) insertion
algorithm is a bijection

w = (P(w), Q(w))

from S,, onto pairs of size-n standard tableaux of equal shape.

Example
Let w = 452361. Then
1136 1125
Pw)=|2|5 and Q(w)=|3|4
4 6
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RSK bijection example

Let w = 452361.

1 3 6 1136
P: 4 4 5 29 23 2 3 6 2 5 P(w) =215
4 4 5 4 5
4 4
1 2 5 11215
1 2 1 2 1 2 5
Q: 1 1 2 3 2 4 2 4 34 Q(w)—gzl

Insertion and bumping rule for P

» Insert x into the first row of P.

» If x is larger than every element in the first row, add x to the end
of the first row.

» If not, replace the smallest number larger than = in row 1 with x.
Insert this number into the row below following the same rules.

Recording rule for Q)

For QQ, insert 1,...,n in order so that the shape of Q at each step
matches the shape of P.
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Q(w) determines the box-ball dynamics of w

Theorem (SUMRY 2021)
If Q(v) = Q(w), then

» v and w first reach steady state at the same time, and

» the soliton decompositions of v and w have the same shape

Example v = 21435 and w = 31425

Qv) = Q(w) = 5151

Both v and w have steady-state time t = 1

—_

315

e

215

SD(v) =

S

SD(w) =

W

()
o
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Questions (steady-state time)

Two permutations are said to be (Q-equivalent if they have
the same Q-tableau.

» Given a Q-tableau, find a formula to compute the
steady-state time for all permutations in this ()-tableau

equivalence class.

» Find an upper bound for steady-state times of all
permutations in 5,,.
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L-shaped soliton decompositions
Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition

then its steady-state time is either ¢t =0 or t = 1.

Remark

Such permutations include “noncrossing involutions" and “column

words" of standard tableaux.

Example

Both v = 21435 and w = 31425 have steady-state time t = 1.

1

3

5

SD(v) =4

2

v = (12)(34) and w = 31425 is the column word of

SD(w)

1

2

5

4

3

p—t

DO
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Maximum steady-state time

Theorem (UConn 2020)
If n>5 and 12 ... n-2n-
Q(w) =34 ,

then the steady-state time of w is n — 3.

Conjecture

For n > 4, the steady-state time of a permutation in §,, is at
most n — 3.
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A permutation with steady-state time n — 3

11215

Let w = 452361 € Sg. Then Q(w) =[3|4| and the steady-state time
6

of wis 3 =n—3.

t=20 415 3/6|1

t=1 415 1/3|6

t =2 4195 1136

t=3 4 o 1/3|6

t=4 4 o 1/3|6

t=2>5 4 o 1(3|6

15 / 20



Questions (soliton decomposition)

» When is the soliton decomposition SD a standard
tableau?

» Characterize the permutations with the same soliton
decompositions
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When is SD(w) a standard tableau?

Example

11316 11315 11215
SD(452361) = |25 SD(21435) = |4 SD(31425) = |4

4 2 3

Theorem (UConn 2020 + D. Grinberg)

Given a permutation w, the following are equivalent:
1. SD(w) is standard
2. SD(w) = P(w)
3. the shape of SD(w) is equal to the shape of P(w)

Definition (good permutations)
We say that a permutation w is good if the tableau SD(w) is standard.
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Q(w) determines whether w is good

Proposition

Given a standard tableau 7', either

All w such that Q(w) =T are good,

or

All w such that Q(w) = T are not good.

Definition (good tableaux)
A standard tableau T is good if T'= Q(w) and w is good.

» (QQuestion: How many good tableaux are there?
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Answer: Good tableaux are new Motzkin objects!

Theorem (SUMRY 2022)

The good standard tableaux, {Q(w) | w € S,, and SD(w) is standard},

are counted by the Motzkin numbers: 9

My =1, My, = M, _1 + Z M; M, _o_;
i—=0

OO OO0
BN DNy Y

Ms =4

The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835.
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Further question: Characterize permutations with the
same soliton decomposition

1 1
251 365241 635214 632541 [5
6] 3]
/ K Ak =
114 — 14
205 362541 365214 r = 632514 [2°
6 ; ‘51 6
KB £l KB
1]4] s 1]4]
2 5
5 326541 632154 2
3 5|

Permutations connected by Knuth moves to r = 632514 and
their soliton decompositions
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The end of part I
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Knuth moves

» A Knuth move between two v, w € 5, is the act of swapping
consecutive entries

yrz and yzr  (Knuth move of the first kind) or
rzy and zzy  (Knuth move of the second kind)
where © < y < z, or
rzys and v zrys  (Knuth move of both kinds (Kg))

where © < 1/,,ys < 2.

» We say v and w are Knuth equivalent if they differ by a sequence
of Knuth moves.

Example
326514 ~*2 326154 326154 ~%1 362154 362154 ~%5 362514



P-tableaux and Knuth moves
Theorem (Knuth, 1970)

» There is a path of Knuth moves from w to the row reading word of
P(w).

» Two permutations have the same P tableau iff they are in the
same Knuth equivalence class.

Example

The Knuth equivalence class of the row reading word r» = 362514 of
14
215

3|6 r = 362514
K/ yB
362154 326514

K1, not Kx %2, not KB

326154
.
321654




Future: Characterize permutations with the same soliton

decomposition
Partial Result (UConn 2020): The soliton decomposition is
preserved by non-Kp Knuth moves, but one K g move changes
the soliton decomposition.

Example

Soliton decompositions of the Knuth equivalence class of 362154:

114
r = 362514 [2]°
316
174 K/ Kb 174
2121 362154 326514 |2°
3 K1, not Kp Anot K33
114
T 326154
§) 4
3 ‘ K5

321654
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Examples: permutations with L-shaped SD

A permutation with L-shaped SD which is not a column
reading word:

w = 3217654 = (13)(47)(56) is a noncrossing involution.

114
1[4 5
P(w) = Q(w) = ?, 2 and  SD(w) = g
7 2
3

An involution which is neither noncrossing nor a column
reading word:

v = 5274163 = (15)(37) has a crossing.

1/3]6
1136 4
Pv) =Q(v) =24 and SD(v) =12
517 7
D




Permutations connected by K g moves having the same SD

Two permutations with the same SD which are connected by Kg

moves:
r=35124  gp(. —|L112]4
(7) 3Te
112]4 Kb
SD = ° 31524
K5, not K4
11214
SD =15 31254
3
K5, not K4
11214
SD =15 13254
3
Kp
11214

w = 13524 SD(w) =




Future: Characterize good permutations using pattern
avoldance

A pattern v is a consecutive pattern of a permutation w if w has
a consecutive subsequence whose elements are in the same
relative order as v. Otherwise, w avoids v.

» w = 314592687 contains v = 2413 because the subsequence
5926 is ordered in the same way as 2413

> w = 314592687 avoids v = 321 because 314592687 has no
consecutive subsequence ordered in the same way as 321.
(Remark: 314592687 contains a non-consecutive subsequence
with pattern 321. What is this subsequence?)

Further question: Come up with a statement “a permutation is
good iff it avoids the consecutive patterns ...”
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InsFira’oion: TuJFe, A 77 Mq"> (Bj5rner — Wachs |‘777) REQATng, f)_oo’r)

K Given a q/u(ver -, which s an ovrientation of Vi—Va— .o — Viea
C— -  —
divected %YGFV' +the ‘tyPe, Ah+2 D)'hkfn Aiagram

we construct Folygoh P(Q) wWith vertices 0,1,2,..,n+2 from left 4o rig}\t
uFPef—barred

0 ver<ices 7 o v v,
via the rule N S
Ve Vel

lo wer- baryed
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0 H—H—+—— --. —iNn+2
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_
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Q uiver represen tations

v Vs
Q quiver ex g Tmue Ty, KTC

A vepresentation M of Q is assigning.

% q finle-dimensiona) K- vector space to each Vertex of K

x a k-linear map for each arrow of Q

R

I & is an orientoation of -he ‘-[-/y]:e A

bfnkTm d«“agram ; ;_ Sv lﬂ:l-l 5 "< “(

“InAeCoMFoSaHe,” reFresentations of QR
<—

Tntervals {f,?fl,..-) 4}) 1< i<+



he Auslander—Reiten quiver

The Auslander —Reiten q/u(vcr of Q is a directed %mrh \_1@ with

vevrtices: '((\o\eCom?oSaLle. repcre sentationg

arvrows ¢ \\]rreJucib[e. Mor?hfsmsll
Auslander —Reiten quiver g of Q:
3

4 9 1
U1 U3

0L T T, N /! \13/
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2 4
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Darnard — G, — Meehan — Schiffler, 2017 [BRGMS 19]
A model —Fof the AR q/u(\/er insFirEo\ by the 7 op (‘Fo‘( ‘EﬂFe A>

{ Line Segments X[‘,QD} H{Tndew\mPosable representationg M(it1, g)}
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Trian%u[a‘tions



A ne W C\ass o]C qui\/ewf Y@Freseﬂtaﬁons

Def [RGMS 19]

let @ be a {yFe A quiVer.

A reFresenta-HOﬂ T of Q is woaximal almost vigid (mar) if

(1) T has (:FF vertices of Q)‘?‘(:FF arrows of Q) non-isomorphic summands

(2) For each pair A, B of summands of T, called
if 0>B—>E—~A—> O is a short exact sequence, al most
m’g(o?

then EZBP®A or E is ino!ecomFosable

Remafk Co\ncl”l'tion (1) can be fQF]aC/tol with

T is maximal with res?ecjc @(2)“



Trian%u[a‘tioﬂs <— ??

1 hm [BGMS 19]
%\,‘trfang_ulatfons of P(Q)} <—> imar Y&Fresentaﬁong of QR (‘Ej?e A>}

Def
The n-th Catalan humber is the humber of £rian%u|ati0hs of -the (n-i-,i)'%on

Corollarj . s

The mar reFregentaJcTong are counted by the Catalan wnumbers T
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Tell 2imilay gtovries about war objeC{;g Tn the &e:u:Tn%_ of

“%cntle quivers with velations” “str'm% quivers with velations”. and wore.
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PQ\N;MI ovaey onN ’Hf\e/ ™May YePY‘esentat'lons

T%m [RGMS 19]

We Fut a notural Cambrian Foset structure on the mar TeFfeSenta'Hong of
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Tell 2imilay gtovries about war objeC{;g Tn the &e:u:Tn%_ of

“%cntle quivers with velations” “str'm% quivers with vrelations”. and wore.
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