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min Zeevinsky 2001

Dynkin diagram s y cluster algebra A

ABCD EFG of finite type

E g Type Ca a
12117

Choose an orientation of to get a valued quiver

Q a sb
1 x y

I initial cluster
initial valued quiver








































































































The exchange graph for type Ca cluster algebra

4 1 X alk b
4 1 21 2 Y Yt 1 2

41,424 9x y s y x y
The six cluster variables

x
1 42

y x 112,24
92 y

1 42

y
agkill b a kill b Yt I X2
x s 19,412,24 9 xy

X 2ytyx

Yy ay

a ki b ask b II
x Y y 1 4,9

Rinitial cluster








































































































Te superunitary regin of the Ca Custer agebra embedded in R

t.EE
The six cluster variables Yt I x2

x y 71
each set to 1 y

x 71
y 7,1 tyg
173 1,124 4271

Yt I X2
x y

x't 2yt y yMy

1771 x I 1 431

971



















































































Te superunitary regi n of the 3 Custer agebra embedded in IR

nitial quiver

nitial Custer Xi Xa X

The nine cluster variables

each set to 7,1

71 71 71 lilt
71 71 71
71 71 71








































































































Chap t n min Zeevinsky 2002

Let A be a Dynkin type cluster algebra
The exchange graph of A is the l skeleton of a polytope
called the generalized associahedron of t

Faces f the gen ass ciahedrn are indexed by sub clusters
a sub lusterisasubset of a cluster

O face a cluster M Xa Xr
vertex re of vertices of Q

face 4 sub cluster

r D face L a cluster variable x

facet
1 face 4 a sub cluster IX of size r 1 aka a mutation
edge

nterior I the empty sub cluster








































































































dea Construct a regular CW complex with the same face structure
as the generalized ass ciahedrn

E g for type Ca cluster algebra vertices 4 clusters

facets 4 cluster variables
Yt 1 X alk b interiors the empty subcluster9 1 311

2 Y Ytl x x'tightx y

I72 x 1124 9

alk b a kill b
x
y

1 9,41 9

x
YY

a kill b at b
x Y y 1 4,9
Initial cluster








































































































tally positive region

ef A a cluster algebra
fine a topological space A IR ring homomorphisms pit R
with the coarsest topology for which for all a EA

the map
ta AIR p

P I pla is continuous

The totally positive region of A is A IR o the set of

ring homomorphisms pit R which

send each cluster variable to a positive number

Fact Given a cluster Xi x2 Xr in A

we can identify A IR o with the positive orthant Rt o

via homeomorphism fix ACR o I Rt o

p H par PAR Parl
E g x1 x2

if pix l p ka y then p 1,1 is a

A o

if p xi 3 Phil 2 then p 3,2








































































































Superunitary region

Main Def heaterifarythrelgion of a Dynkin type cluster algebra t is

p
ing homomorphisms P R such that

totally positivePK I for all cluster variables x
C R o

uperunitary region region

Given a cluster H use n me m rphism fix A R o Is Rr o
Totally positive Positive

t embed A IR 1 into Rt o region orthant

superunitary region
4 15271

Set each cluster variable 7,1 Y

positive Laurentpolynomial is
411,24 9y

E g Embedding of type C2 A Ry into IR

a
kill

b y
it

using x y








































































































4 1513
K x y Yd

In this embedding fix
xty.pt

p where p x 3 ply z 1 3,2 ER
an extreme

point
P 7 129 5

y
t

3,2

9 1 2 2 1 9 2 integer
x y 6

p x't 2yty 9 1 1,4 4 1
My

p IL 1 3 1








































































































4 15 3y a
x y

In this embedding fix my g

p where p x 2 pay 3 1 2,3 ER
an interior 12,3

point
P y 3 y

t

p
Yt I x2 3 1 4

86 43x y 6

p x't 2yty 4 1 6 9
229 53

My 12

p IL 13 2








































































































4 15 3y A
x y

In this embedding fix
xty.pt

p where p x l ply I 1 lil ER
an extreme

point
P y 2 y

t

9 1 2
3 integer a DXy

p x 1 29 927 5
My

p 17 2








































































































Th m A If A is a Dynkin type cluster algebra the superunitary

regi n A Ry is a regular CW complex which is

cellular homeomorphic to the generalized associahedron

Subcluster face indexed by subcluster X is p A Rst p a i iffa ex

K face 4 a subcluster X of size r K

r 1 face a a cluster variable x
facet
I face a a subcluster H of size r 1 aka a mutation
edge
O face
vertex h a cluster Nixa x

3 undary of A IR D
n nemptysubcluster

face indexed by K

interior of ACIR D pit IR where pay it al var x

indexed by the empty sub cluster

C r A Rs is closed and bounded

If The generalized associahedron is a polytope as








































































































An application of super unitary regions
A uniform proof of a previously open conjecture that

there are finitely many positive integral friezes
for each Dynkin type

Def he set of frieze points is superunitary
region

zz
ring homomorphisms p IR such that

PK E Z for all cluster variables x
C R

C r If A is a Dynkin type cluster algebra
the set of frieze points is finite totally positive region

of The homeomorphism THE Rfositive orthant

restricts to A 2 1

42ft integral points
and A Z 1 yA R super unitary

region
Since A IR 1 is bounded the set of frieze points is finite










































































What d we mean sy positive integral friezes in this talk

J
z

Def Q a valued Dynkin quiver e.g Q type A 4
Build the repetitin quiver ZQ

o tis it
s s s s s

A positive integral frieze is a functin ZQ 2 satisfying
Conway C xeter 97 s

for each
a id we have ad be I

type A
E g a type As 23 frieze

7 73 72 7

is 55 i jd d
3

d
2

acero Crap t n 2 6 and b
seem Zeutenaur Smith 2 I for each a t

Id ad b bet
in general bk
friezes a cluster algebras



Fact f Q is Dynkin A 271 Zz friezes of Q
Friezepoints

1hm B F Q is Dynkin there are finitely many Zz friezes of Q

Pf Earlier we said A 271 is a finite set

ti story of proofs by type Techniques

Type A Conway Coxeter 1970s Polygon triangulations

3 CD Ga Fontaine Plamondon 2014 Type D triangulations
once punctured polygon

EG Fa Luntz Plamondon 2018 Eg friezes G 2 friezes
of height 3

Ey Eg G Muller 2022 Uniform proof for all types
Conjecture for Ey Ee was open until using compactness of the

superunitary region



Quiver Dynkin Superunitary Inequalities
1hm C There is a frieze point type region

in the interior of A Ry
iff

Q is a union of

type Dn n not prime
type Es

type In Intl E 272
type Gs

E g In rank 2 there is

a frieze point in

the interior of ACIR 1

iff Q is of type Ga
1327

3

I




