

Superunitary regions, generalized associahedra, and

 $p\{x_2, x_3\}$

 $\{x_3\}$

 $\{x_3, x_4\}$

Ø

 $\{x_4\}$

 $\{x_{5}\}$

 $\{x_4, x_5\}$

friezes of Dynkin type cluster algebras

Emily Gunawan (University of Oklahoma) Jt. w/ Greg Muller

Special Session on Cluster Algebras, Positivity and Related Topics AMS Spring Central Sectional Meeting University of Cincinnati Sunday, April 16, 2023

E.g. Type
$$C_2 \bigtriangleup : a \xrightarrow{(2,1)} b$$

Choose an orientation of Δ to get a "valued quiver": $Q = a \xrightarrow{(2,1)} b$ $1 \in X, Y$ initial (valued) guiver

The six cluster variables:

• X

y

• $\frac{1+X^2}{4}$

• $\frac{1+y}{x}$

 $\cdot \frac{y+1+\chi^2}{\times y}$

 $\cdot \frac{X^2 + |+ 2y + y^2}{X^2 y}$

The superunitary region of the A3 cluster algebra, embedded in \mathbb{R}^3

Faces of the gen. associahedron are indexed by subclusters: a subcluster is a subset of a cluster

Idea Construct a regular CW complex with the same face structure as the generalized associahedron

E.g. for type C2 cluster algebra:

vertices \leftrightarrow clusters facets \leftrightarrow cluster variables interior \leftrightarrow the empty subcluster

• The totally positive region of A is $A(R_{>o}) :=$ the set of ring homomorphisms $p: A \rightarrow \mathbb{R}$ which send each cluster variable to a positive number.

Fact Given a cluster
$$\mathscr{K} = \{x_1, x_2, ..., x_r\}$$
 in \mathcal{A} ,
we can identify $\mathcal{A}(\mathbb{R}>0)$ with the positive orthant $\mathbb{R}^r>0$
via homeomorphism $f_{\mathscr{K}} : \mathcal{A}(\mathbb{R}>0) \cong \mathbb{R}^r>0$
 $p \mapsto (p(x_i), p(x_2), ..., p(x_r))$
E.g. $\mathscr{K} = \{x_{i,x_2}\}$
if $p(x_i) = 1$, $p(x_2) = 1$ then $f_{\mathscr{K}}(p) = (i, 1)$
 $if p(x_1) = 3$, $p(x_2) = 2$ then $f_{\mathscr{K}}(p) = (3, 2)$
 $f_{\mathscr{K}}(p) = (3, 2)$

$\underline{Thm A}$ If A is a Dynkin type cluster algebra, the superunitary
region $\mathcal{A}(\mathbb{R}_{\geq 1})$ is a regular CW complex which is
cellular homeomorphic to the generalized associahedron.
Subcluster face indexed by subcluster X is $\{p: A \rightarrow \mathbb{R} \text{ s.t } p(a) = 1 \text{ iff } a \in X\}$
• k-face \iff a subcluster X of size r-k
$(r-1)$ -face \leftarrow a cluster variable x (facet)
$1-face \leftrightarrow a subcluster X of size r-1 (aka a mutation) (edge)$
• O-face (vertex) \leftarrow a cluster $X = \{x_1, x_2, \dots, x_r\}$
• Boundary of $\mathcal{A}(\mathbb{R}_{\geq 1}) = \bigsqcup_{\text{χ nonempty}}$ subcluster face indexed by \mathbb{X}
• Interior of $\mathcal{A}(\mathbb{R}_{\geq 1}) = \{p: \mathcal{A} \rightarrow \mathbb{R} \text{ where } p(x) > 1 \forall cl. var x \}$
indexed by the empty subcluster
Cor $\mathcal{A}(\mathbb{R}_{\geq 1})$ is closed and bounded.
Pf The generalized associated ron is a polytope.

$$\begin{array}{c} \underline{Cor} & \text{If } \mathcal{A} \text{ is a Dynkin type cluster algebra,} \\ & \text{the set of frieze points is finite.} & \text{totally positive region} \\ \\ \underline{Pf} & \text{The homeomorphism } \mathcal{A}(\mathbb{R}_{\geq 0}) \cong \mathbb{R}_{\geq 0}^{r} \\ & \text{restricts to} & \mathcal{A}(\mathbb{Z}_{\geq 1}) \hookrightarrow \mathbb{Z}_{\geq 1}^{r} \\ & \text{positive orthant} \\ & \text{pos integral points} \\ & \text{and} & \mathcal{A}(\mathbb{Z}_{\geq 1}) \hookrightarrow \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ super unitary} \\ & \text{Since } \mathcal{A}(\mathbb{R}_{\geq 1}) \text{ is bounded, the set of frieze points is finite.} \end{array}$$

What do we mean by positive integral friezes (in this talk)?
Def Q a (valued) Dynkin quiver, e.g. Q=
Build the "repetition quiver" ZQ

$$\cdots$$

A positive integral frieze is a function $\mathbb{Z}Q \rightarrow \mathbb{Z}_{\geq 1}$ satisfying \cdots
 $\left[\begin{array}{c} \text{Conway-Coxeter 1970s}\\ \text{type A}\end{array}\right]$ for each $a = \frac{1}{2}$
 ε_{q} . a type A3 $\mathbb{Z}_{\geq 1}$ -frieze \cdots
 $1 = \frac{1}{2}$
 ε_{q} . a type A3 $\mathbb{Z}_{\geq 1}$ -frieze \cdots
 $\int_{1}^{2} \frac{1}{3}$
 ε_{q} , a type A3 $\mathbb{Z}_{\geq 1}$ -frieze \cdots
 $\int_{1}^{2} \frac{1}{3}$
 ε_{q} , $a = \frac{1}{2}$
 ε_{q} , $\frac{1}{2}$
 ε_{q} , $\frac{1}{2}$

<u>Fact</u> If Q is Dynkin, $\mathcal{A}(\mathbb{Z}_{\geq 1}) \xleftarrow{I-1} \mathbb{Z}_{\geq 1}$ - friezes of Q frieze points		
Thm B If Q is Dynkin, there are finitely many $\mathbb{Z}_{\geq 1}$ -friezes of Q.		
<u>Pf</u> Earlier we said $\mathcal{A}(\mathbb{Z}_{\geq 1})$ is a finite set.		
History of proofs, by type	Techniques	
V Type A Conway-Coxeter 1970s	Polygon triangulations	
√ BCD,G₂ Fontaine-Plamondon 2014	Type D triangulations (once-punctured polygon)	
✓ E6, F4 Cuntz-Plamondon 2018	{E6 friezes} → {2-friezes of height 3}	
✓ E7, E8 G Muller 2022 Conjecture for E7, E8 was open until	Uniform proof for all types using compactness of the superunitary region	

$$\frac{\text{Thm C}}{\text{in the interior of } \mathcal{A}(\mathbb{R}_{\geq 1})}$$
iff
Q is a union of ...
• type Dn, n not prime
• type E8
• type Bn, $\sqrt{n+1} \in \mathbb{Z}_{\geq 2}$
• type G2
E.g. In rank 2, there is
a frieze point in
the interior of $\mathcal{A}(\mathbb{R}_{\geq 1})$
iff Q is of type G2

FIGURE 1. The superunitary regions of types A_2 , B_2/C_2 , and G_2 (embedded in $\mathbb{R}^2_{>0}$)