Triangulations & maximal almost rigid modules Emily Gunawan (University of Oklahoma) Jt. w. E. Barnard, R. Coelho Simões, & R. Schiffler

Representations of Algebras and Related Combinatorics

March 12-13, 2022

Gentle bound path algebrasM
$$Def A$$
 finite-dimensional algebra $A = kQ_{\perp}$ is gentle if:if(G1) \forall vertex i of Q , \exists at most 2 arrows starting at iif \exists at most 2 arrows ending at iif(G2) I is generated by paths of length 2(G3) \forall arrow a of Q , \exists at most 1 arrow b s.t ba \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow b s.t ba \in I \exists at most 1 arrow c s.t ba \in I \exists at most 1 arrow c s.t ba \in I \exists at most 1 arrow c s.t ba \in I \exists at most 1 arrow b s.t ba \in I \exists at most 1 arrow b s.t ba \in I \exists at most 1 arrow b s.t ba \in I \exists at most 1 arrow b s.t ba \in I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists at most 1 arrow c s.t ac \notin I \exists arrow c s.t ac \notin I \exists arrow c s.t ac \notin I \exists arrow c s.t ac d \exists arrow c s.t ac d \exists arrow c s.t ac d

•
$$\omega$$
 string \leftrightarrow M(ω) string module

Recall def
$$T \in mod(A)$$
 is tilting if
(T1) T has $|Q_0|$ non-isomorphic summands
vertices of Q
(T2) For each pair A, B of summands of T,
if $0 \rightarrow B \rightarrow E \rightarrow A \rightarrow O$ is a short exact sequence, then $E \cong B \oplus A$
(T3) T has projective dimension at most 1.

$$\underbrace{\text{Def}}_{T} A = \frac{|k|Q_{1}}{I} \quad \text{finite representation type gentle algebra.} \\ T \in \mod(A) \quad \text{is } \underline{\text{maximal almost rigid}}_{I}(mar) \quad \text{if} \\ (M_{1}) \quad T \quad \text{has } |Q_{0}| + |Q_{1}| \quad \text{non-isomorphic summands} \\ \underbrace{\text{vertices of } Q}_{Vertices of } Q \quad arrows \quad \text{of } Q \\ (M_{2}) \quad \text{For each pair } A, B \quad \text{of summands of } T, \\ if \quad 0 \rightarrow B \rightarrow E \rightarrow A \rightarrow O \quad \text{is a short exact sequence}, \\ \text{then } E \cong B \oplus A \quad \text{or } E \quad \text{is indecomposable} \\ \end{aligned}$$

pg 3

MAIN RESULTS

1.
$$\{ \text{mar modules} \} \leftrightarrow \{ \text{marmissible}^{"} \text{ ideal triangulations} \}$$

of a marked surface A

2. Define an oriented flip graph of mar(A) such that the "projective" mar is a sink & the "injective" mar is a source

3. Construct a new gentle algebra

$$\overline{A} := |k \overline{Q}_{\overline{I}} \text{ where } |\overline{Q}_0| = |Q_0| + |Q_1|.$$

Then $M \in mar(A) \implies End_A(M) \cong End_{\overline{A}}(T)$ for some
 $\text{tilting module T in mod}(\overline{A})$

A =
$$kQ_{I}$$
 is a gentle algebra iff
A comes from a 4-tuple (S, M, P, R)
oriented marked points (marked points
surface in 25 in S

"Rules":

$$i \xrightarrow{a} \xrightarrow{b} k$$
 $ab \notin I$ corresponds to configuration $i \xrightarrow{a} \xrightarrow{b} k$ of P
 $i \xrightarrow{a} \xrightarrow{b} \xrightarrow{b} k$ $ab \in I$ corresponds to configuration $i \xrightarrow{a} \xrightarrow{b} \xrightarrow{b} \xrightarrow{k} of P$

$$\frac{Ex}{Q=1} \xrightarrow{a \to 2} \xrightarrow{b \to 3} \xrightarrow{a \to 2} \xrightarrow{c \to 4} \xrightarrow{a \to 2} \xrightarrow{a \to 2}$$

$$\frac{Thm1}{mar(A)} \leftrightarrow Spermissible ideal triangulations of (S,R) \\ including boundary edges$$

$$\frac{Ex}{Q=1 \xrightarrow{a \to 2} \xrightarrow{b \to 3}}$$

$$I = \langle ab \rangle$$

Each T in mar(A)
has
$$|Q_0| + |Q_1|$$
 summands
 $4 + 3$

Example (extra)

Oriented flip graph (extra)