Polylopes and the brewery problem

A brewery produces ale and beer

ALE Profil: \$13/barrel 5 Lb corn 4 oz hops 35 lb malt

BEER Profil: \$23/barrel 15 Lb corn 4 oz hops 20 lb mall

- Limited resources: The brewery only has 480
 Lb of corn, 160 oz of hops, and 1190 Lb of
 malt.
- How many barrels of ale and beer should be produced to maximize total profit given the existing resources?

a convex polylope?

4

CONVEX polycopes

CONVEX POLYCOPES

The five platonic solids

NOE CONVEX

Origami by Madeline Handschy

NOL CONVEX

stamps featuring non-convex polytopes

DEFINITION: A region is <u>convex</u> if it contains every line segment joining two of its points

Not convex

Leonhard Euler (1707-1783)

Switzerland 1957, 2007; East Germany 1950, 1983; Russia 1957; Korea 2014

What are these?!

What are ... the faces of a polytope?

A tetrahedron

k-lh dimensional faces

A O-dimensional face (vertex) -

A 1-dimensional face (edge)

A 3-dimensional face (the entire tetrahedron)

A 2-dimensional

face

Councing faces

The face-vector or f-vector of a 3D polytope is (f0, f1, f2), where

f0 = # of the 0-dimensional faces (vertices) f1 = # of the 1-dimensional faces (edges) f2 = # of the 2-dimensional faces

$(f_0, f_1, f_2) = (8, 12, 6)$

Octa(8)hedron (6,12,8)

Hexa(6)hedron (8,12,6)

Icosa(20)hedron

Dodeca(12)hedron

from Wikimedia Commons

Icosa(20)hedron (12, 30, 20)

Dodeca(12)hedron (20, 30, 12)

Tetra(4)hedron (4,6,4)

Tetra(4)hedron (4,6,4)

Euler's formula $f_0 - f_1 + f_2 = \dots$

- @ (f0, f1, f2) o Cube: (8, 12, 6)
- @ Octahedron: (6, 12, 8)
- @ Dodecahedron: (20, 30, 12)
- @ Icosahedron: (12, 30, 20)
- Tetrahedron: (4, 6, 4)

Euler's formula in German

What is ... a half-space?

Points (x,y) where 2x - y = -5is a line Points (x,y) where $2x - y \le -5$ is a half-space

DEFINITION: A convex polytope is the intersection of finitely many half-spaces

Points (x,y)satisfying a system of inequalities: $2x - y \le -5$ $x + y \le 2$ $-x \le 4$

What is ... a half-space?

ePoints (x,y,z) where 3x - 2y + z = 12is a plane Points (x,y,z) where $3x - 2y + z \le 12$ is a half-space

•Solutions to linear equation $a_1x_1 + a_2x_2 + a_3x_3 = b$ is a plane •Solutions to linear inequality $a_1x_1 + a_2x_2 + a_3x_3 \le b$ is a half-space

• Solutions to a system of linear inequalities is ...

from Wikimedia Commons DEFINITION: A <u>convex</u> <u>polytope</u> is the intersection of finitely many half-spaces

A <u>half-space</u> is A linear inequality

 $a_1 x_1 + a_2 x_2 + \dots + a_d x_d \le b$

A convex polytope is solutions to a system of linear inequalities $a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,d}x_d \le b_1$ $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,d}x_d \le b_2$ \vdots $a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,d}x_d \le b_d$

A brewery produces ale and beer Limited quantity of corn, hops, malt

Beverage	Ale	Beer	Quantity
Corn (lb)	5	15	480
Hops (oz)	4	4	160
Malt (lb)	35	20	1190
Profit/barrel (\$)	13	23	

How can we maximize profits?

Devote all resources to ale: 1190/35=34 barrels of ale; profit: \$442 Devote all resources to beer: 480/15=32 barrels of beer; profit: \$736 12 barrels of ale, 28 barrels of beer; profit: \$800

Beverage	Ale	Beer	Quantity
Corn (lb)	5	15	480
Hops (oz)	4	4	160
Malt (lb)	35	20	1190
Profit/gallon (\$)	13	23	

Let A = # of barrels of ale Let B = # of barrels of beer

Corn	(Ib)
Hops	(oz)
Malt	(lb)

 $5A + 15B \le 480$ $4A + 4B \le 160$ $35A + 20B \le 1190$ $0 \le A, 0 \le B$

Restrictions due to Limited resources

 $5A + 15B \le 480$ $4A + 4B \le 160$ $35A + 20B \le 1190$ $0 \le A, 0 \le B$

Optimal solution occurs at an extreme point

Other applications

- Science Linear programming: airline crew assignment, data mining, radiation therapy, etc.
- NASA: Unfolding space telescopes for ease of transport
- Voting theory: Computing probability that different
 voting systems produce different winners
- @ Group theory: reflection groups, etc.
- Combinatorics: partial ordered sets, cluster algebras, etc.

Congratulations to the award winners!

This talk was inspired by an MAA Distinguished Lecture Series presentation by Prof. Jesús De Loera (UC Davis) in September 2012: "Easy to state but hard to solve: favorite open problems in polyhedral geometry"