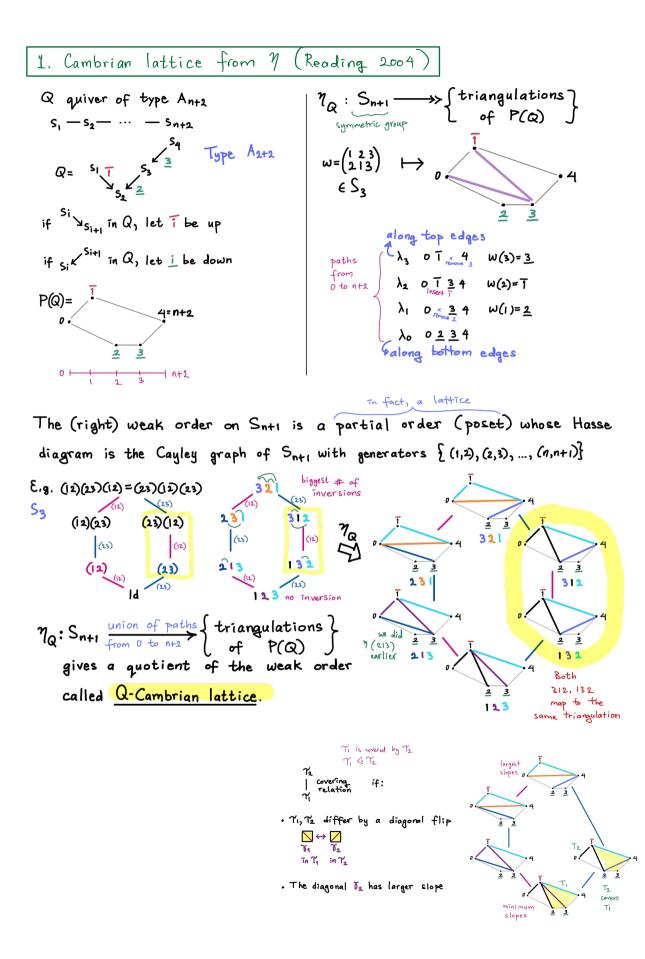
Monday, 22 November 2021

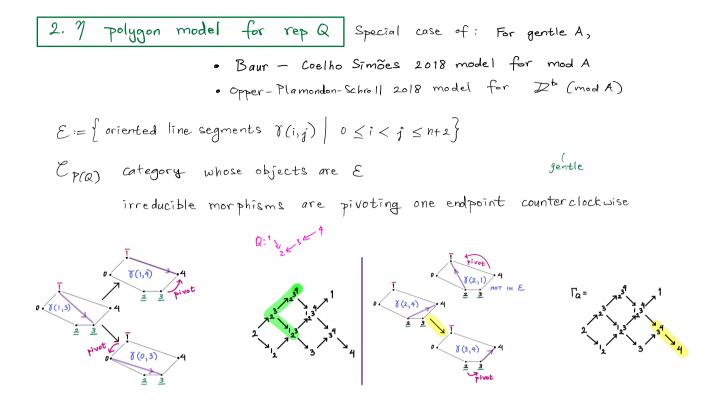
Talk notes at equnawan.github.io/talks/21/november/queensu21.pdf

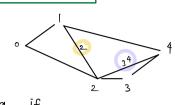
Outline

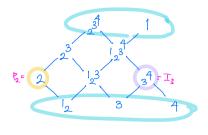
2. 7 polygon model for rep Q
3. What do Ations correspond to ? Maximal almost rigid representations
4. The endomorphism algebra of a mar representation is
a type A tilted algebra.

5. nrep: Sn+1 >>> mar(Q) Cambrian lattice









Recall Def T is tilting if

- · T is basic (no repeated indecomposable summands)
- · For each pair A, B of indecomposable summands of T, every short exact sequence is split.

Def T is almost rigid if

- · T is basic (no repeated indecomposable summands)
- For each pair A_1B of indecomposable summands of T, if $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ is a non-split s.e.s then E is indecomposable.

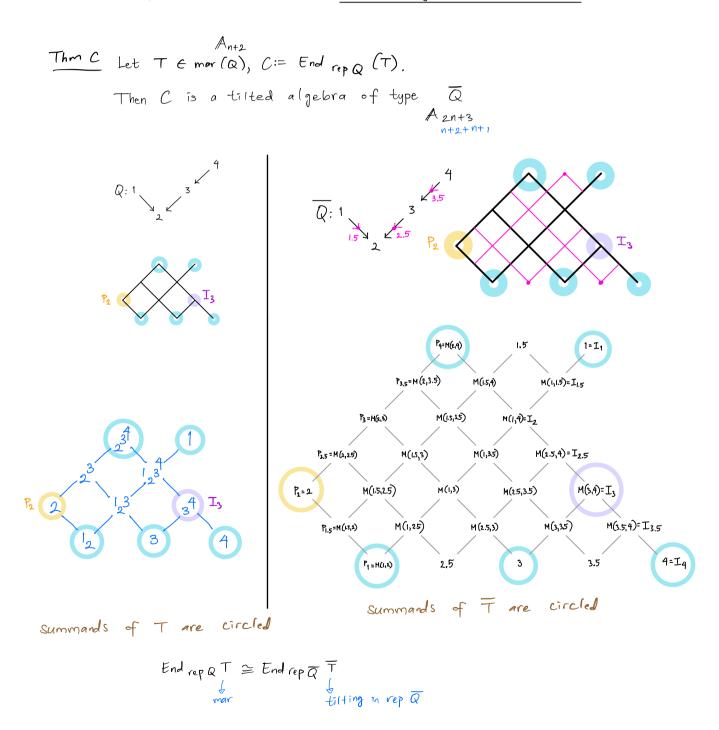
An almost rigid T is maximal almost rigid if
 TOM is not almost rigid for any representation M.

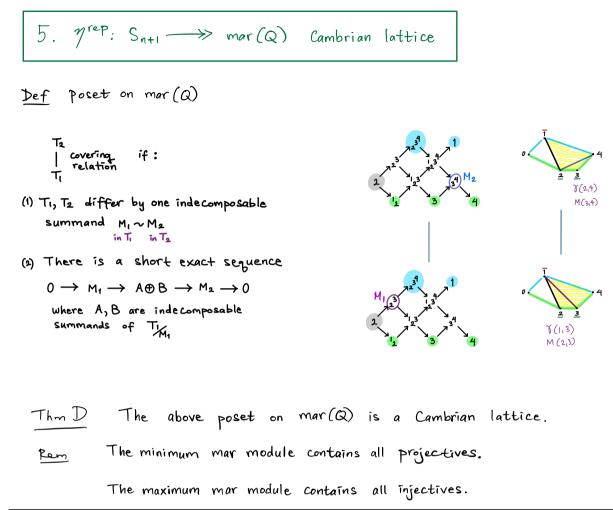
- $\frac{Cor}{R} = \frac{1}{n+2} = 2n+3 \qquad \begin{array}{c} n+3 & boundary \ line & segments, \\ n & internal \\ n+2 \\ n+1 \end{array} \qquad \begin{array}{c} n+3 & boundary \ line & segments, \\ n & internal \\ n+2 \\ n+1 \end{array}$

Work in-progress For representation-finite gentle algebra $\overset{kQ}{I}$, $\left\{\begin{array}{c} \text{permissible Δtions}\\ \text{of}(S,M,\Gamma) \end{array}\right\} \longleftrightarrow \max(Q,I)$ marked ribbon surface graph Using [Baur - Coelho Simões] + [Opper-Plamondon-Schroll] model

4. End $\operatorname{rep}_Q \top$ for $\top \in \operatorname{mar}(Q)$

 $\frac{\text{Def}}{\text{End rep}} \left(\text{Happel} - \text{Ringel 1982} \right) \quad \text{Let } M \text{ be a tilting module in rep} \overline{Q}.$ End rep \overline{Q} M is called a tilted algebra of type \overline{Q} .





$ \begin{array}{c} \gamma: S_{n+1} \xrightarrow{\text{union of paths}} & \left\{ \text{triangulations} \\ \text{of } P(Q) \right\} \text{ induces } \gamma: S_{n+1} \xrightarrow{\text{union" of representations}} & \text{mar}(Q) \\ & & & \\ \end{array} $			
E.g. $\omega = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S$	ω(1)= <u>2</u>	W(2)=1	W(3)= <u>3</u>
λο ο <u>2</u> <u>3</u> 4	$\lambda_1 0 \times 3 4$	$\frac{\text{insert } \overline{1}}{\lambda_2 \ o \ \overline{1} \ \underline{3} \ 4}$	$\lambda_3 $ o T × 4
P	$\overline{1}$	0.	0
Take union of all edges of $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ to get triangulation $\mathcal{V}(213)$			
λ ^γ = ¹ 2€3€4	λ ^r = ¹ ³ ⁽²⁾ ⁴	λ <mark>ᡗ</mark> = 1⊕₂ ³ ⊕4	$\lambda_3^r = 1 \oplus_{2^3}^4$
	$ \begin{array}{c} $		
Take union of all 7	ext(2) indecomposable	summands to get m.	

