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Multicolor box-ball system, Takahashi 1993
A box-ball system (BBS) is a dynamical system with balls labeled by numbers 1
through n in an infinite strip of boxes. Balls take turns jumping to the rightmost
empty box, starting with the smallest-numbered ball.

t = 0 4 5 2 3 6 1

4 5 2 3 6 1

4 5 3 6 2 1

4 5 6 2 1 3

5 4 6 2 1 3

4 5 6 2 1 3

t = 1 4 5 2 1 3 6
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Box-ball system example (t = 0 through t = 5)

t = 0 4 5 2 3 6 1

t = 1 4 5 2 1 3 6

t = 2 4 5 2 1 3 6

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

t = 5 4 2 5 1 3 6
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Solitons and steady state
Definition
A soliton of a box-ball system is an increasing run of balls that moves at a speed
equal to their length and is preserved by all future box-ball moves.

Example
The strings 4, 25, and 136 are solitons:

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

t = 5 4 2 5 1 3 6

After a finite number of BBS moves, the system reaches a steady state where:
I the system is decomposed into solitons, i.e., each ball belongs to one soliton
I the lengths of the solitons are weakly decreasing from right to left
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Tableaux (English notation)
Definition
A tableau is an arrangement of numbers {1, 2, ..., n} into rows whose lengths are
weakly decreasing.
A tableau is standard if its rows and columns are increasing.

Example

Standard Tableaux: 1 2 4

3 5

6 7

1 3 6

2 5

4

1 3 4

2

5

6

Not a tableau: 1 2

3 5 4
Nonstandard Tableau: 1 2 3

5 6 7

4
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Soliton decomposition

Definition
The soliton decomposition SD(w) of a permutation w is the tableau whose rows are
the solitons stacked from right to left.

Example

t = 3 4 2 5 1 3 6

t = 4 4 2 5 1 3 6

t = 5 4 2 5 1 3 6

SD(452361) =
1 3 6
2 5
4

with shape (3, 2, 1).
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RSK algorithm

The Robinson–Schensted–Knuth (RSK) insertion algorithm is a bijection

w 7→ (P (w), Q(w))

from Sn onto pairs of size-n standard tableaux of equal shape.

Example

Let w = 452361. P (w) = 1 3 6

2 5

4

and Q(w) = 1 2 5

3 4

6

.

(Please ask me if you’d like to see the computation.)
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The Q tableau determines the dynamics of a box-ball system
Theorem (SUMRY 2021)
If Q(π) = Q(w), then the box-ball systems of π and w are identical if we ignore the
ball labels, in particular:
I π and w first reach steady state at the same time, and
I the soliton decompositions of π and w have the same shape

Example π = 21435 and w = 31425

Q(π) = Q(w) =
1 3 5
2 4

Both π and w first reach steady state at t = 1.

SD(π) =
1 3 5
4
2

SD(w) =
1 2 5
4
3
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L-shaped soliton decompositions
The time when w first reaches steady state is called the time to steady state of w.

Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition SD =

1 . . .

...

,

then its time to steady state is either t = 0 or t = 1.

Example
Such permutations include noncrossing involutions and column reading words of
standard tableaux.

Both π = 21435 and w = 31425 have steady-state time t = 1.

SD(π) =
1 3 5
4
2

SD(w) =
1 2 5
4
3

π = 21435 = (12)(34) and w = 31425 is the column reading word of 1 2 5
3 4

.
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Maximum steady-state time

Theorem (UConn 2020)
If n ≥ 5 and

Q(w) =

1 2 . . . n− 2 n− 1

3 4

n

,

then the steady-state time of w is n− 3.

Conjecture

For n ≥ 4, the maximum time to steady state is n− 3.

Partial Results (SUMRY 2021):
I If the shape of Q(w) is (n− 3, 2, 1), the maximum steady-state time is n− 3.
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When is SD standard?

Example

SD(452361) =
1 3 6
2 5
4

SD(21435) =
1 3 5
4
2

SD(31425) =
1 2 5
4
3

Theorem (UConn 2020)
Given w ∈ Sn, the following are equivalent:
1. SD(w) is standard
2. SD(w) = P (w)

3. the shape of SD(w) is the same as the shape of P (w)

Definition
We say that a permutation w is good if the tableau SD(w) is standard.
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Good tableaux and Motzkin numbers
Fact: Q(w) determines whether w is good
Given a Q-equivalence class, either all permutations in it are good or all of them
are not good.

Definition (Good tableaux)
A standard tableau T is good if each permutation whose Q tableau equals T is good.

Conjecture

{Q(w) | w ∈ Sn and SD(w) is standard} are counted by the Motzkin numbers.

n = 3
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Consecutive pattern avoidance

Definition
A permutation σ is said to be a consecutive pattern of another permutation w if w
has a consecutive subsequence whose elements are in the same relative order as σ.

Example
w = 314592687 contains σ = 2413 because the consecutive subsequence 5926 is
ordered in the same way as σ = 2413.

Theorem (SUMRY 2021)
The good permutations are closed under consecutive pattern containment. That is,
if a permutation is good, then any consecutive subpermutation is also good.
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Knuth Relations
Suppose π, w ∈ Sn and x < y < z.
1. π and w differ by a Knuth relation of the first kind (K1) if

π = x1 . . . yxz . . . xn and w = x1 . . . yzx . . . xn or vice versa
2. π and w differ by a Knuth relation of the second kind (K2) if

π = x1 . . . xzy . . . xn and w = x1 . . . zxy . . . xn or vice versa
In addition, π and w differ by a Knuth relation of both kinds (KB) if they differ
by K1 and they differ by K2, that is,

π = x1 . . . y1xzy2 . . . xn and w = x1 . . . y1zxy2 . . . xn or vice versa

where x < y1, y2 < z

Example 326154 ∼K1 362154 362154 ∼KB 362514

We say that π and w are Knuth equivalent if they differ by a finite sequence of
Knuth relations.
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Facts (Knuth)
I There is a path of Knuth moves from w to the row reading word of P (w).

I Two permutations have the same P tableau if and only if they are in the same
Knuth equivalence class.

Example

The Knuth equivalence class of the row reading word r = 362514 of
1 4
2 5
3 6

r = 362514

362154 326514

326154

321654

KB KB

K1 K2

KB
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Soliton decompositions and Knuth moves

The soliton decomposition is preserved by non-KB Knuth moves, but one KB move
changes the soliton decomposition.

Theorem (UConn Math REU 2020)
Let r denote the row reading word of P (w).

I SD(r) = P (r).

I If there exists a path of non-KB Knuth moves from w to r, then
SD(w) = P (w).

I If there exists a path from w to r containing an odd number of KB moves, then
SD(w) 6= P (w).
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Soliton decompositions in the Knuth equivalence class of 362154

r = 362514

1 4
2 5
3 6

362154

1 4
2 5
6
3

326514

1 4
2 5
6
3

3261541 4
2 5
6
3

321654

1 4
5
6
2
3

KB KB

K1 K2

KB
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Thank you!



Extra: RSK algorithm example
Let w = 452361.

P : 4 4 5
2 5
4

2 3
4 5

2 3 6
4 5

1 3 6
2 5
4

P (w) =
1 3 6
2 5
4

Q : 1 1 2
1 2
3

1 2
3 4

1 2 5
3 4

1 2 5
3 4
6

Q(w) =
1 2 5
3 4
6

Insertion and bumping rule for P
Insert x into the first row of P. If x is larger than every element in the first row,
add x to the end of the first row. If not, replace the smallest number larger than x
in row 1 with x. Insert this number into the row below following the same rules.

Recording rule for Q
For Q, insert 1, . . . , n in order so that the shape of Q at each step matches the
shape of P.



Extra: A localized version of Greene’s theorem, part 1

Definition (A localized version of longest k-increasing subsequences)
Let i(u) := the length of a longest increasing subsequence of u.

For w ∈ Sn and k ≥ 1, let Ik(w) = max
w=u1|···|uk

k∑
j=1

i(uj), where the maximum is taken

over ways of writing w as a concatenation u1 | · · · | uk of consecutive subsequences.

Example
Let w = 5623714. For short, we write Ik := Ik(w). Then

I1 = i(w) = 3 (since the longest increasing subsequences are 567, 237, and 234),
I2 = 5 (witnessed by 56|23714 or 56237|14),
I3 = 7 (witnessed uniquely by 56|237|14), and
Ik = 7 for all k ≥ 3.



Extra: A localized version of Greene’s theorem, part 2

Definition (A localized version of longest k-decreasing subsequences)
Let D(u) := 1 + |{descents of u}|.

For w ∈ Sn and k ≥ 1, let Dk(w) = max
w=u1t···tuk

k∑
j=1

D(uj), where the maximum is

taken over ways to write w as the union of disjoint subsequences uj of w.

Example
Let w = 5623714. For short, we write Dk := Dk(w). Then

D1 = D(w) = 1 + |descents of 5623714| = 1 + |{2, 5}| = 3,

D2 = 6 (one can take subsequences 531 and 6274, among other partitions),
D3 = 7 (one can take subsequences 52, 631, and 74, among other partitions), and
Dk = 7 for all k ≥ 3.



Extra: A localized version of Greene’s theorem, part 3

Theorem (Lewis–Lyu–Pylyavskyy–Sen 2019)
Suppose w ∈ Sn. Let Λ = (Λ1,Λ2,Λ3, . . . ) denote sh SD(w). Let
M = (M1,M2,M3, . . . ) denote the conjugate of Λ. Then, for any k,

Ik(w) = Λ1 + Λ2 + . . .+ Λk,

Dk(w) = M1 +M2 + . . .+Mk.

Example
Let w = 5623714. Then sh SD(w) = (I1, I2− I1, I3− I2) = (3, 2, 2). We can verify
this by computing the soliton decomposition SD(w), which turns out to be the
(non-standard) tableau

1 3 4
2 7
5 6

.

Note: sh SD(w) = (3, 2, 2) is smaller than shP (w) = (3, 3, 1) in the dominance
order.



Extra: Two permutations with L-shaped SD

L-shaped SD which is not a column reading word:
w = 3217654 = (13)(47)(56) is a noncrossing involution.

P (w) = Q(w) =

1 4
2 5
3 6
7

and SD(w) =

1 4
5
6
7
2
3

An involution which is neither noncrossing nor a column reading word:
π = 5274163 = (15)(37) has a crossing.

P (π) = Q(π) =
1 3 6
2 4
5 7

and SD(π) =

1 3 6
4
2
7
5



Extra: Good permutations are not closed under classical pattern
containment

Starting with n = 5, a good permutation in Sn may have a substring which is not
good.

Example
I The permutation 25143 is good, but its subpermutation 2143 is not good.
I The permutation 35142 is good, but its subpermutation 3142 is not good.
I Let w = 42513, which is a good permutation, and let σ = 4253 be a substring

of w. The standardization of σ is 3142, which is not good.

(Therefore, the good permutations cannot be characterized by a set of classical
avoided patterns.)



Extra: Permutations connected by KB moves and have the same SD
Two permutations with the same SD which are connected by KB moves:

r = 35124 SD(r) = 1 2 4
3 5

31524SD =
1 2 4
5
3

31254SD =
1 2 4
5
3

13254SD =
1 2 4
5
3

w = 13524 SD(w) = 1 2 4
3 5

KB

K2, not K1

K2, not K1

KB



Extra: Solitary waves
(Desmos link)

https://www.desmos.com/calculator/83du3dvasv

