Box-Ball Systems and Robinson-Schensted-Knuth Tableaux

Emily Gunawan, on REU projects by
Ben Drucker, Eli Garcia, Aubrey Rumbolt, Rose Silver (UConn Math REU '20)
Marisa Cofie, Olivia Fugikawa, Madelyn Stewart, David Zeng (SUMRY '21)
Banff International Research Station for Mathematical Innovation and Discovery (BIRS):
"Dynamical Algebraic Combinatorics" workshop at the UBC Okanagan campus in Kelowna, B.C., November 3, 2021

Multicolor box-ball system, Takahashi 1993

A box-ball system (BBS) is a dynamical system with balls labeled by numbers 1 through n in an infinite strip of boxes. Balls take turns jumping to the rightmost empty box, starting with the smallest-numbered ball.

Box-ball system example ($t=0$ through $t=5$)

$t=0$	4	5	2	3		6	1																
$t=1$			4	5			2	1	3	6													
$t=2$						4	5	2			1	3		6									
$t=3$									2	5						3	6						
$t=4$									4		2	5						1	3	6			
										4					5						1	3	6

Solitons and steady state

Definition

A soliton of a box-ball system is an increasing run of balls that moves at a speed equal to their length and is preserved by all future box-ball moves.

Example

The strings 4, 25, and 136 are solitons:

After a finite number of BBS moves, the system reaches a steady state where:

- the system is decomposed into solitons, i.e., each ball belongs to one soliton
- the lengths of the solitons are weakly decreasing from right to left

Tableaux (English notation)

Definition

A tableau is an arrangement of numbers $\{1,2, \ldots, n\}$ into rows whose lengths are weakly decreasing.
A tableau is standard if its rows and columns are increasing.

Example

1	3	4
2		
5		
6		

Soliton decomposition

Definition

The soliton decomposition $\operatorname{SD}(w)$ of a permutation w is the tableau whose rows are the solitons stacked from right to left.

Example

$$
t=3
$$

						4	2	5				1	3	6						

$t=4$

							4		2	5					1	3	6			

$t=5$

								4			2	5						1	3	6

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & & \\
\hline
\end{array} \text { with shape }(3,2,1)
$$

RSK algorithm

The Robinson-Schensted-Knuth (RSK) insertion algorithm is a bijection

$$
w \mapsto(P(w), Q(w))
$$

from S_{n} onto pairs of size- n standard tableaux of equal shape.
Example

Let $w=$ 452361. $P(w)=$\begin{tabular}{|l|l|l}
\hline 1 \& 3 \& 6

\hline 2 \& 5 \&

\hline 4 \& \&

\quad and $\quad Q(w)=$

\hline 1 \& 2 \& 5

\hline 3 \& 4 \&

\hline
\end{tabular} .

(Please ask me if you'd like to see the computation.)

The Q tableau determines the dynamics of a box-ball system

Theorem (SUMRY 2021)

If $Q(\pi)=Q(w)$, then the box-ball systems of π and w are identical if we ignore the ball labels, in particular:

- π and w first reach steady state at the same time, and
- the soliton decompositions of π and w have the same shape

Example

$$
\pi=21435 \text { and } w=31425
$$

$$
Q(\pi)=Q(w)=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array}
$$

Both π and w first reach steady state at $t=1$.

$$
S D(\pi)=\begin{array}{|l|l|ll}
\hline 1 & 3 & 5 \\
\hline 4 & & & S D(w)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 4 & & \\
\hline 3 & & \\
\hline 3 & &
\end{array} \quad \begin{array}{ll}
\\
\hline
\end{array} \\
\hline
\end{array}
$$

L-shaped soliton decompositions

The time when w first reaches steady state is called the time to steady state of w.

Theorem (SUMRY 2021)

If a permutation has an L-shaped soliton decomposition $S D=\square, \square$, then its time to steady state is either $t=0$ or $t=1$.

Example

Such permutations include noncrossing involutions and column reading words of standard tableaux.

$$
\text { Both } \pi=21435 \text { and } w=31425 \text { have steady-state time } t=1
$$

$$
S D(\pi)=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 4 & & \\
\hline 2 & & S D(w)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 4 & & \\
\hline 3 & & \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\pi=21435=(12)(34) \text { and } w=31425 \text { is the column reading word of } \begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline
\end{array} .
$$

Maximum steady-state time

Theorem (UConn 2020)
If $n \geq 5$ and

$$
Q(w)=
$$

then the steady-state time of w is $n-3$.

Conjecture

For $n \geq 4$, the maximum time to steady state is $n-3$.
Partial Results (SUMRY 2021):

- If the shape of $Q(w)$ is $(n-3,2,1)$, the maximum steady-state time is $n-3$.

When is SD standard?

Example

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & & \left.\mathrm{SD}(21435)=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 4 & & \\
\hline 2 & & \mathrm{SD}(31425)=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 4 & & \\
\hline 3 & & \\
\hline
\end{array} \\
\hline
\end{array} \right\rvert\, \begin{array}{ll}
&
\end{array} \\
\hline
\end{array}
$$

Theorem (UConn 2020)

Given $w \in S_{n}$, the following are equivalent:

1. $\mathrm{SD}(w)$ is standard
2. $\mathrm{SD}(w)=P(w)$
3. the shape of $\mathrm{SD}(w)$ is the same as the shape of $P(w)$

Definition

We say that a permutation w is good if the tableau $\mathrm{SD}(w)$ is standard.

Good tableaux and Motzkin numbers

Fact: $Q(w)$ determines whether w is good
Given a Q-equivalence class, either all permutations in it are good or all of them are not good.

Definition (Good tableaux)

A standard tableau T is good if each permutation whose Q tableau equals T is good.

Conjecture

$\left\{Q(w) \mid w \in S_{n}\right.$ and $\mathrm{SD}(w)$ is standard $\}$ are counted by the Motzkin numbers.

$$
n=3
$$

Consecutive pattern avoidance

Definition

A permutation σ is said to be a consecutive pattern of another permutation w if w has a consecutive subsequence whose elements are in the same relative order as σ.

Example

$w=314592687$ contains $\sigma=2413$ because the consecutive subsequence 5926 is ordered in the same way as $\sigma=2413$.

Theorem (SUMRY 2021)

The good permutations are closed under consecutive pattern containment. That is, if a permutation is good, then any consecutive subpermutation is also good.

Knuth Relations

Suppose $\pi, w \in S_{n}$ and $x<y<z$.

1. π and w differ by a Knuth relation of the first kind $\left(K_{1}\right)$ if

$$
\pi=x_{1} \ldots y x z \ldots x_{n} \text { and } w=x_{1} \ldots y z x \ldots x_{n} \text { or vice versa }
$$

2. π and w differ by a Knuth relation of the second kind $\left(K_{2}\right)$ if

$$
\pi=x_{1} \ldots x z y \ldots x_{n} \text { and } w=x_{1} \ldots z x y \ldots x_{n} \text { or vice versa }
$$

In addition, π and w differ by a Knuth relation of both kinds $\left(K_{B}\right)$ if they differ by K_{1} and they differ by K_{2}, that is,

$$
\pi=x_{1} \ldots y_{1} x z y_{2} \ldots x_{n} \text { and } w=x_{1} \ldots y_{1} z x y_{2} \ldots x_{n} \text { or vice versa }
$$

where $x<y_{1}, y_{2}<z$
Example
$326154 \sim^{K_{1}} 362154$
$362154 \sim^{K_{B}} 362514$

We say that π and w are Knuth equivalent if they differ by a finite sequence of Knuth relations.

Facts (Knuth)

- There is a path of Knuth moves from w to the row reading word of $P(w)$.
- Two permutations have the same P tableau if and only if they are in the same Knuth equivalence class.

Example

The Knuth equivalence class of the row reading word $r=362514$ of | 1 | 4 |
| :--- | :--- |
| 2 | 5 |
| 3 | 6 |

$\quad r=362514$ K/

Soliton decompositions and Knuth moves

The soliton decomposition is preserved by non- K_{B} Knuth moves, but one K_{B} move changes the soliton decomposition.

Theorem (UConn Math REU 2020)

Let r denote the row reading word of $P(w)$.

- $\mathrm{SD}(r)=P(r)$.
- If there exists a path of non- K_{B} Knuth moves from w to r, then $\mathrm{SD}(w)=P(w)$.
- If there exists a path from w to r containing an odd number of K_{B} moves, then $\mathrm{SD}(w) \neq P(w)$.

Soliton decompositions in the Knuth equivalence class of 362154

Thank you!

Extra: RSK algorithm example

Let $w=452361$.
\(\begin{array}{llllllllllllllll}1 \& \& 4 \& 4 \& 5 \& 2 \& 5 \& 2 \& 3 \& 2 \& 3 \& 6 \& 3 \& 6

4 \& \& 5 \& 5 \&

4 \& 5 \& \&

4 \& \& \end{array} \quad P(w)=\)| 1 | 3 | 6 |
| :--- | :--- | :--- |
| | 5 | |
| 4 | | |

$Q:$	1	1	2	1	2	1	2	1	2	5
3		3	4	3	4					

$\begin{array}{lll}1 & 2 & 5 \\ 3 & 4 & \\ 6 & & \end{array}$

$$
Q(w)=
$$

Insertion and bumping rule for P
Insert x into the first row of P . If x is larger than every element in the first row, add x to the end of the first row. If not, replace the smallest number larger than x in row 1 with x. Insert this number into the row below following the same rules.

Recording rule for Q

For Q , insert $1, \ldots, n$ in order so that the shape of Q at each step matches the shape of P .

Extra: A localized version of Greene's theorem, part 1

Definition (A localized version of longest k-increasing subsequences)

Let $\mathrm{i}(u):=$ the length of a longest increasing subsequence of u.
For $w \in S_{n}$ and $k \geq 1$, let $\mathrm{I}_{k}(w)=\max _{w=u_{1}|\cdots| u_{k}} \sum_{j=1}^{k} \mathrm{i}\left(u_{j}\right)$, where the maximum is taken over ways of writing w as a concatenation $u_{1}|\cdots| u_{k}$ of consecutive subsequences.

Example

Let $w=5623714$. For short, we write $\mathrm{I}_{k}:=\mathrm{I}_{k}(w)$. Then
$\mathrm{I}_{1}=\mathrm{i}(w)=3$ (since the longest increasing subsequences are 567, 237, and 234),
$\mathrm{I}_{2}=5$ (witnessed by $56 \mid 23714$ or $56237 \mid 14$),
$\mathrm{I}_{3}=7$ (witnessed uniquely by $56|237| 14$), and
$\mathrm{I}_{k}=7$ for all $k \geq 3$.

Extra: A localized version of Greene's theorem, part 2

Definition (A localized version of longest k-decreasing subsequences)

Let $\mathrm{D}(u):=1+\mid\{$ descents of $u\} \mid$.
For $w \in S_{n}$ and $k \geq 1$, let $\mathrm{D}_{k}(w)=\max _{w=u_{1} \sqcup \cdots \sqcup u_{k}} \sum_{j=1}^{k} \mathrm{D}\left(u_{j}\right)$, where the maximum is taken over ways to write w as the union of disjoint subsequences u_{j} of w.

Example
Let $w=5623714$. For short, we write $\mathrm{D}_{k}:=\mathrm{D}_{k}(w)$. Then
$\mathrm{D}_{1}=\mathrm{D}(w)=1+\mid$ descents of $5623714|=1+|\{2,5\}|=3$,
$\mathrm{D}_{2}=6$ (one can take subsequences 531 and 6274 , among other partitions),
$\mathrm{D}_{3}=7$ (one can take subsequences 52,631 , and 74 , among other partitions), and
$\mathrm{D}_{k}=7$ for all $k \geq 3$.

Extra: A localized version of Greene's theorem, part 3

Theorem (Lewis-Lyu-Pylyavskyy-Sen 2019)

Suppose $w \in S_{n}$. Let $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots\right)$ denote $\operatorname{sh} \operatorname{SD}(w)$. Let $M=\left(M_{1}, M_{2}, M_{3}, \ldots\right)$ denote the conjugate of Λ. Then, for any k,

$$
\begin{aligned}
\mathrm{I}_{k}(w) & =\Lambda_{1}+\Lambda_{2}+\ldots+\Lambda_{k}, \\
\mathrm{D}_{k}(w) & =M_{1}+M_{2}+\ldots+M_{k} .
\end{aligned}
$$

Example

Let $w=5623714$. Then $\operatorname{sh} \operatorname{SD}(w)=\left(\mathrm{I}_{1}, \mathrm{I}_{2}-\mathrm{I}_{1}, \mathrm{I}_{3}-\mathrm{I}_{2}\right)=(3,2,2)$. We can verify this by computing the soliton decomposition $\mathrm{SD}(w)$, which turns out to be the (non-standard) tableau

$$
.
$$

Note: $\operatorname{sh} \mathrm{SD}(w)=(3,2,2)$ is smaller than $\operatorname{sh} P(w)=(3,3,1)$ in the dominance order.

Extra: Two permutations with L-shaped SD

L-shaped SD which is not a column reading word: $w=3217654=(13)(47)(56)$ is a noncrossing involution.

$$
P(w)=Q(w)=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 5 \\
\hline 3 & 6 \\
\hline 7 & \text { and } \operatorname{SD}(w)=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 5 & 6 \\
\hline 7 & \begin{array}{|l|}
\hline 7 \\
\hline 2 \\
\hline
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

An involution which is neither noncrossing nor a column reading word: $\pi=5274163=(15)(37)$ has a crossing.

$$
P(\pi)=Q(\pi)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
2 & 4 & \\
\hline 5 & 7
\end{array} \text { and } \operatorname{SD}(\pi)=
$$

Extra: Good permutations are not closed under classical pattern containment

Starting with $n=5$, a good permutation in S_{n} may have a substring which is not good.

Example

- The permutation 25143 is good, but its subpermutation 2143 is not good.
- The permutation 35142 is good, but its subpermutation 3142 is not good.
- Let $w=42513$, which is a good permutation, and let $\sigma=4253$ be a substring of w. The standardization of σ is 3142, which is not good.
(Therefore, the good permutations cannot be characterized by a set of classical avoided patterns.)

Extra: Permutations connected by K_{B} moves and have the same $S D$
Two permutations with the same $S D$ which are connected by K_{B} moves:

Extra: Solitary waves

