Cluster algebraic interpretation of infinite friezes

Emily Gunawan – Gustavus Adolphus College

(Joint work with Gregg Musiker and Hannah Vogel)

AMS Spring Eastern Sectional Meeting, Hunter College, New York, NY Saturday, May 6, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite frieze patterns

Definition

A (Conway-Coxeter) frieze pattern is an array such that:

- 1. the top row is a row of 1s
- 2. every diamond

b a d c

satisfies the rule ad - bc = 1.

Example (a finite integer frieze)																
		1		1		1		1		1		1		1		• • •
Row 2			3		1		2		2		1		3		1	
		2		2		1		3		1		2		2		
			1		1		1		1		1		1		1	

Note: every frieze pattern is completely determined by the 2nd row.

Conway and Coxeter (1970s)

Theorem

Finite frieze patterns \longleftrightarrow triangulations of polygons

Broline, Crowe, and Isaacs (BCI, 1970s)

Theorem

Entries of a finite frieze pattern \longleftrightarrow edges between two vertices.

Broline, Crowe, and Isaacs (BCI, 1970s)

Definition (BCI tuple)

Let R_1 , R_2 , ..., R_r be the boundary vertices to the right of γ . A **BCI tuple** for γ is an *r*-tuple (t_1, \ldots, t_r) such that:

- (B1) the *i*-th entry t_i is a triangle of T having R_i as a vertex. (We say that the vertex R_i is matched to the triangle in the *i*-th entry of the tuple).
- (B2) the entries are pairwise distinct.

Cluster algebras (Fomin and Zelevinsky, 2000)

A **cluster algebra** is a commutative ring with a distinguished set of generators, called **cluster variables**.

Cluster algebras from surfaces (Fomin, Shapiro, and Thurston, 2006, etc.)

- ► Fix a marked surface: a Riemann surface S + marked points.
- Points are either on the boundary of S or in the interior (called punctures).
- The cluster variables \longleftrightarrow arcs with no self-intersection.

Remark

- A cluster algebra of type A arises from a polygon.
- A cluster algebra of type D arises from a punctured polygon.

Caldero-Chapoton (2006)

Theorem

The cluster variables of a cluster algebra from a triangulated polygon (type A) form a finite frieze pattern.

Remark: When the variables are specialized to 1, we recover the integer frieze pattern.

BCI tuples to a cluster variable

A **BCI trail** w for (t_1, \ldots, t_r) is a walk from the beginning to the ending point of γ along T such that:

(TR 1) the triangles t_1, \ldots, t_r are to the right of w,

(TR 2) the other triangles are to the left of w.

Proposition (Carroll-Price, 2003 and others)

There is a lattice-preserving bijection between the BCI tuples and *T*-paths (of Schiffler-Thomas, 2006-2007).

BCI tuples to a cluster variable

Theorem (Carroll-Price, Schiffler-Thomas, and others) 1. BCI-trail formula: the Laurent polynomial expansion corresponding to γ written in the variables of T is

$$x_{\gamma} = \sum_{w} rac{\prod \textit{odd steps of } w}{\prod \textit{even steps of } w}$$

where the sum is over all BCI-trails w for γ .

2. Starting from the minimal BCI-tuple for γ , we get all the BCI-tuples by "toggling" to a triangle closer to the starting point

୬ ୯.୧ 9/24

An infinite frieze pattern

	1	1		1		1		1	1		1		1		1		1		1	:	1	1		1		1	1
	4		1		2		3		2	4		1		2		3		2		4	1		2		3		2
		3		1		5		5	7		3		1		5		5		7	:	3	1		5		5	7
			2		2		8	1	7	5		2		2		8	1	L7		5	2		2		8	1	7
Le	evel	1		3		3	2	7	12		3		3		3	2	27	1	2		3	3		3	2	27	12
					4	1	LO		 9	7		4		4	1	 10		 19		7			4		.0		.9
					1	13		7	11		9		5	1	13		7	1	1	9	Э	5	-	13		7	11
							9		4	14		11	1	16		9		4	1	4	11		16		9		4
Le	evel	2						5	5		17	3	35	1	1		5		5	1	7	35		11		5	5
									6	6	Į	54	2	24		6		6		6	54	:	24		6		6
									7		19	3	37	1	13		7		7	19	Э	37		13		7	7
Le	evel	3								22		13	2	20	1	15		8	2	2	13		20	1	.5		8
										:	15		7	2	23	1	17	2	5	1	5	7	2	23	1	.7	25
												8		8	2	26	5	53	1	7	8		8	2	26	5	3
													9		9	8	31	3	6	9	Э	9		9	8	\$1	36
														L0	2	28	 5	55	1	9	10	,	10	2	28	5	 5
Le	evel	4												З	31	1	19	2	9	2	1, 🚊	11		31	⊒1	.9	₂ 29
															2	21	1	0	З	2	23		34	2	21	1	$\mathbf{n}/24$

Infinite frieze patterns

Theorem (Baur, Fellner, Parsons, and Tschabold, 2015-2016)

Any **infinite** frieze can be constructed from a triangulation of a punctured disk or an annulus/ infinite strip.

Theorem (G., Musiker, Vogel)

We construct an infinite frieze pattern of Laurent polynomials corresponding to arcs (allowing self-intersections) between the boundary vertices of a punctured disk or annulus.

Convention: the boundary is to the right of the curve. < a</p>

Remark: When the variables are specialized to 1, we recover the integer frieze pattern.

1		1		1		1		1		1		1		1		1		1		1	
	4		1		2		3		2		4		1		2		3		2		Z
		3		1		5		5		7		3		1		5		5		7	
			2		2		8	-	17		5		2		2		8	1	7		5
				3		3	2	27	-	12		3		3		3	2	27	1	2	
					4		 10		19		7		4		4		 10		9		7
					-	13		7		11		9		5	-	13		7	1	1	
							9		4		14	-	11	-	16		9		4	1	4
								5		5	1	L7	3	35	-	11		5		5	
									6		6	Ę	54		24		6		6		6
										7	1	19	- 3	37-		13	<.≣	•7	1	7	<u>ک</u>

13/24

Theorem (G., Musiker, Vogel)

We construct an infinite frieze pattern of Laurent polynomials corresponding to arcs (allowing self-intersections) between the boundary vertices of a punctured disk or annulus.

Proof: The self-intersecting arcs correspond to elements of the algebra via skein relation

due to Musiker, Schiffler, and Williams (2011), and others.

Example (Example of resolving a self-crossing)

Complementary arcs

Definition (complementary arc)

Let i < j and let γ_k be the arc from i to j with k - 1 self-crossings. The **complementary arc** γ_k^C of γ_k is the arc from j to i with k - 1 self-crossings.

Glide symmetry for finite friezes

In a polygon

a punctured disk/annulus

- 17 ▶

16/24

Complementary arcs in infinite friezes

Progression formulas

Theorem (G., Musiker, and Vogel)

Let γ_1 be an arc starting and finishing at vertices *i* and *j*. For k = 1, 2, ... and $1 \le m \le k - 1$, we have

$$x(\gamma_k) = x(\gamma_m)x(Brac_{k-m}) + x(\gamma_{k-2m+1}^{C}), where:$$

▶ for
$$r \ge 0$$
, γ_{-r}^{C} is the curve γ_{r+1} with a kink, so that $x(\gamma_{-r}^{C}) = -x(\gamma_{r+1})$, and

▶ a bracelet Brac_k is obtained by following a (non-contractible, non-self-crossing, kink-free) loop k times, creating (k − 1) self-crossings.

$$x(\gamma_4) = x(\gamma_1)x(Brac_3) + x(\gamma_3^{\mathcal{C}}) \text{ for } k = 4, m = 1$$

18/24

Arithmetic progressions in frieze patterns from punctured disks (Tschabold)

1 1 **1** 1 1 1 1 **1** 1 1 1 1 **1** 2 3 2 4 1 2 3 2 4 1 2 3 2 1 4 5 7 3 **1** 5 5 7 3 **1** 5 5 7 5 3 1 8 17 5 2 2 8 17 5 2 2 8 17 2 2 3 27 **12** 3 3 3 27 **12** 3 3 3 27 **12 4** 10 19 7 4 **4** 10 19 7 4 **4** 10 19 9 5 13 7 11 9 5 13 7 11 13 7 11 **4** 14 11 16 9 **4** 14 11 16 9 **4** 9 5 17 35 11 5 5 17 35 11 5 5 5 6 54 **24** 6 6 6 54 **24** 6 6 6 7 19 37 13 7 7 19 37 13 7 22 13 20 15 8 22 13 20 15 8 **7** 23 17 25 15 **7** 23 17 25 15 8 8 26 53 17 8 8 26 53 9 81 **36** 9 9 9 81 **36** 10 28 55 19 10 **10** 28 55 31 19^{-29⁻³} 21⁻² 11⁻² 31⁻² 19⁻²⁹ Geometric interpretation of the arithmetic progression

Proposition (G., Musiker, Vogel)

The arc from vertex blue to vertex green with k self-intersections

the arc from vertex blue to vertex green with k - 1 self-intersections

Proof: Progression formulas and induction.

In punctured disk case, this growth factor is always 2.

1		1		1		1	1	1	1		1		1		1		1	1		1		1		1		1	1		1		1	1	
	4		1		2		3	2	2	4		1		2	:	3	2	2	4		1		2		3	2		4		1	2	2	3
		3		1		5	5	5	7		3		1		5	;	5	7		3		1		5	;	5	7		3		1	5	
			2		2		8	17		5		2		2	-	3	17	·	5		2		2		8	17		5		2	- 2	2	8
				3		3	27	7	12		3		3		3	2	7	12		3		3		3	2	7	12		3		3	3	2
					4	1	0	19)	7		4		4	1))	19)	7		4		4	1	0	19		7		4	4	1	10
					1	.3	7	7	11		9		5	1	3		7	11		9		5	1	.3	•	7	11		9		5	13	
						1	9	4		14	1	L1	1	6	9	Э	4	ł	14		11	1	.6		9	4		14	1	1	16	3	9
							Ę	5	5	1	17	З	35	1	1		5	5		17	3	35	1	.1	1	5	5	1	17	3	5	11	
								6	;	6	5	54	2	4		3	6	3	6	Į	54	2	24		6	6		6	5	4	24	ł	6
								-																									
									7	1	19	3	87	1	3		7	7		19	3	37	1	.3		7	7	1	19	3	7	13	
									2	22	1	L3	2	0	1	5	8	3	22	:	13	2	20	1	5	8		22	1	3	20)	15
										1	15		7	2	3	1	7	25		15		7	2	23	1	7	25	1	15		7	23	1
												8		8	2	6	53	3	17		8		8	2	6	53		17		8	8	3 1	26
													9		9	8	1	36		9		9		9	8	1	36		9		9	9	8
														~					10		10		~	 0	 0			10		~			
													1	ິ	 	כ 1 ו	50	, 	19	01	10	1	.U	~ ~	0 1	99 20	20	19	1	۰ ۱	1	, , 21	20
														З	01 01	1; 1	9 10	29	ົ້	21	ر در	11	3 7 1	ر ۲	1: 1	9 10	29	ว∩์	د 11	ı د	1	، ۱	ד 1 כו
															2	1 1	10	, 11	32	о с	23	ت 71	94 0	2	1 1	10	4.4	32	2	37	1	ະ າວ	21 1
																1	10	, T T	10	55 17	no	1	2	:0 1	⊥ າ	1 10	11	10	10	。 。	1	23	1.2
																	12					4		1 	∠ 			1Z	10		40	· · ·	12
																		13		37	< i	73	-2	25	1	3	13	- 33	37	7	3	25	~ 1
																			40	-	25	З	88	2	7	14		40	2	5	38	3 23	2/724

Geometric interpretation of the growth factor

The "jump" between frieze level k and k + 1 correspond to the bracelet which crosses itself k - 1 times.

Bracelets with 0, 1, and 2 self-crossings

Definition

Define the normalized Chebyshev polynomial by

$$T_0(x) = 2, T_1(x) = x$$
, and

the recurrence relation

$$T_k(x) = x T_{k-1}(x) - T_{k-2}(x).$$

For punctured disk, every bracelet corresponds to the integer 2.

Thank you

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

24/24

From ideal triangulation T to its polygon cover

 $\sim \rightarrow$

<ロト < 部ト < 書ト < 書ト 差 の Q () 26/24

The 11 BCI tuples correspond to the 11 terms of the expansion of x_{γ} :

$$x_{\gamma} = \frac{\mathbf{x_0}\mathbf{x_1}\mathbf{x_4} + 2x_1x_3x_4 + 2x_0^2 + 4x_0x_3 + 2x_3^2}{x_0x_1x_4}$$

For example, from the minimal BCI tuple $b = (\Delta_0, A, B, C, D, \Delta_3, E, F)$, we get a BCI trail $(b_{40}, \tau_5, \tau_1, \tau_1, \tau_3)$.

