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Abstract

BBS-good tableaux are a class of tableaux arising from box-ball systems. We show that the BBS-
good tableaux of size n are counted by the n-th Motzkin number.

Box-ball systems

Define the discrete dynamical box-ball system (BBS) of w € S,, as follows.

= Label n balls by the one-line notation of w and place them in an infinite empty strip.

= Move the ball labeled 1 to the first empty box to its right and vacate the box from which it
moved. Repeat in order from 2 to n.

= After all n balls have moved, we have completed a box-ball move and we advance time.
This version of the box-ball system was introduced by Daisuke Takahashi in [6] and is an extension

of the box-ball system first invented by Takahashi and Junkichi Satsuma in [7]. For example, given
452361 € Sg, the intermediate steps betweent =0andt =1 are

t=20 4|5 361
415 3|6 1
415 3|6 1
415 6 113
5|4 6 113
4156 113
t=1 ... 419 136
Evolving the system through several box-ball moves we get
t=0 ... 4|5 3161
t=1 ... 45 136
t=2 ... 45 136
t=3 ... 4 5 1|36
t=4 ... 4 5 1|36
t=5 ... 4 5 1/3|6

A soliton is a maximal consecutive increasing sequence of balls that is preserved by all future BBS
moves. A BBS configuration is said to be in steady state when every ball is contained in a soliton.

Theorem 1 (Takahashi [6]): After a finite number of BBS moves, a box-ball system containing a
configuration w € S, will reach a steady state, decomposing into solitons whose sizes are
weakly increasing from left to right, that is, forming an integer partition of n.

The soliton decomposition of a box-ball system is the tableau in which the first row is the
rightmost soliton, the second row is the next soliton to its left, and so on. We call a permutation
BBS-good, or just good, if its SD Is a standard Young tableau. For instance,

SD(452361) = 11316 . and 452361 is good
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Robinson-Schensted (RS) correspondence

We will use the Robinson-Schensted insertion algorithm to study the box-ball system. The
Robinson-Schensted (RS) insertion algorithm is a well-studied bijection between permutations
w € Sy, and pairs of standard Young tableaux (P(w), Q(w)) of the same shape of size n [5].

(1376 1[2]5])

Forinstance452361£s+ 215 | 314

\[ 0 /
The first tableau is called the insertion tableau and the second is called the recording tableau. It
turns out that the recording tableau largely controls box-ball dynamics.

Theorem 2 (DGG+ [2]): w is good if and only if the shape of SD(w) is the same as the shape of
Q(w).

Theorem 3 (CFG+ [1]): If Q(w) = Q(v), then SD(w) and SD(v) have the same shape.

In light of these theorems, we define a standard Young tableau T" to be good when w is good for
any w such that Q(w) =T.
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Motzkin numbers

The n-th Motzkin number, denoted M, is defined by the two term recursion
n—2
Mp = My_—1+ Z MM, j o
k=0
with My = M; = 1.

Theorem 4: The good tableaux of size n are counted by the n-th Motzkin

number.
To prove this theorem, we define operations on good tableaux mirroring each component of the
Motzkin recursion, that is, an operation that takes a size n — 1 tableau and returns a size n

tableau, an operation that takes a size n — k — 2 tableau and returns a size n — k tableau, and an
operation that takes a size k and a size n — k tableaux and returns a size n tableau.

A notion of tableau multiplication

To try and recreate the multiplication of the M. and M,,_;._» terms in the Motzkin recursion, we
introduce a binary operation for tableaux.

Let 77, 75 be standard Young tableaux of size ny, ny. Let T, be a tableau of the same shape as T
but with each value j replaced with 57 4+ ny. Define T1 xT5 as the tableau resulting from placing T}
below T5 and “flushing up” the entries.

|]CT1: 1|2 5,T2=,th€ﬂ?1: 3 4andT1§T2:
314 5 6

Proposition 5: Ty x T is good if and only if Ty and Th are good.

Column bump and row wrap

Let T" be a standard tableau of size n. Construct the column bump of T, denoted bump(T'), to be
Tx [1]. Construct the row wrap, denoted wrap(T), by increasing every element of T by 1 to get
T’, and then replacing the first row of 77 with a copy of the first row but with 1 at the beginning
and n + 2 at the end.

Proposition 6: For a standard Young tableau T', the following are equivalent:

= T is good.
= bump(7T) is good.
= wrap(T) is good.

A Motzkin class of tableaux

A simple characterization of goodness

We call a subsequence o of w a k-decreasing subsequence when o = o1 U oo L. .. Lo with each
o; decreasing or empty. We define d;.(w) to be the length of a longest k -decreasing subsequence
of w.

An index ¢ is a descent of w if w(i + 1) < w(i). We define

k
0 It u Is empty
D(u) = and Dp(w) = max D(w;

() {1+{descents of u}| otherwise k() w:ull_l---l_lukz (1))

The following combines results of Schensted |5], Greene [3], and Lewis et al. [4] to characterize
cood permutations.

Theorem 9: A permutation w is good if and only if dg.(w) = Dg(w) for each k > 1.

Column-superstandard permutations

To exploit the previous characterization of goodness we introduce a class of permutations with
relatively simple d;., D;. statistics. Given a standard Young tableau @, define the

column-superstandard permutation of @) as the RS inverse of (CSS(sh @), @) where CSS(sh Q) is
the column-superstandard tableau of shape sh ) (see example below):

0=l 12[316]7 1] s CsSeshQ) = 14(19(21|22
415 [10]22 2| 9]15(20
819 |14 3(10(16
12|13 17 4(11]17
15]16 |21 5(12(18
18120 6
19 7

so if v = RSTHCSS(sh Q)), Q) is the column-superstandard permutation of @, then v is

v(1) v(3) v(4) v(6) v(7) v(8) v(10) v(11) v(12) v(14) v(15) v(17) v(18) v(19) v(21) v(22)
7 (18) 6 (20) (21) 5 (17) (22) 4 (16) 3 15) 2 1 (14) (19)

Remark 10: The columns of CSS(sh @) appear as decreasing subsequences of v, where the
positions of these subsequences are controlled in a simple way by Q.

Lemma 11: Let v be the column superstandard permutation of a standard tableau . Then v(m)
is the k-th entry from the bottom of the i-th column of CSS(sh @) if and only if @ (k,7) = m.

All good tableaux are in K,

Column-superstandard permutations allow us to prove the following.

Lemma 12: Suppose @) is a good tableau of size n > 2. If Q),,_1 Is the tableau of size n formed
by removing the entry n from @, then Q,,_1 is good.

Then, using induction, we can use this result to prove the other inclusion of the main theorem.

Theorem 13: Suppose () is a good tableau of size n. Then Q) € K,.
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There is a unique decomposition of sorts for tableaux of the form T'x wrap(Q)) for good tableaux
T, () as shown in the following proposition.

Proposition 7: Suppose 17,15, ()1, ()9 are good tableaux such that
T="Tx wrap(Q1) = Thx wrap(@2)
Then Ty =T and Q1 = O)o.

In light of this proposition, we now recursively define the sets of tableaux K, as follows. Let
Ko=A{0} and K| = { 1 } where () denotes the empty tableau. Then, forn > 2,

1. foreach Q € K,,_1, bump(Q) € K,
2. foreach pairof Q1 € Kpand Qo € K,,_j_ofor0 <k <n—2, Q1 x wrap(Q2) € Ky,

No other tableaux are in K.

Theorem 8: Foreachn > 0, each T' € K, is good and | K| = M,

This theorem constitutes one direction of the main theorem, i.e. showing there is a class of good
tableaux which are themselves a Motzkin object.
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