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Abstract

BBS-good tableaux are a class of tableaux arising from box-ball systems. We show that the BBS-

good tableaux of size n are counted by the n-th Motzkin number.

Box-ball systems

Define the discrete dynamical box-ball system (BBS) of w ∈ Sn as follows.

Label n balls by the one-line notation of w and place them in an infinite empty strip.

Move the ball labeled 1 to the first empty box to its right and vacate the box from which it

moved. Repeat in order from 2 to n.

After all n balls have moved, we have completed a box-ball move and we advance time.

This version of the box-ball system was introduced by Daisuke Takahashi in [6] and is an extension

of the box-ball system first invented by Takahashi and Junkichi Satsuma in [7]. For example, given

452361 ∈ S6, the intermediate steps between t = 0 and t = 1 are

t = 0 . . . 4 5 2 3 6 1 . . .

. . . 4 5 2 3 6 1 . . .

. . . 4 5 3 6 2 1 . . .

. . . 4 5 6 2 1 3 . . .

. . . 5 4 6 2 1 3 . . .

. . . 4 5 6 2 1 3 . . .

t = 1 . . . 4 5 2 1 3 6 . . .

Evolving the system through several box-ball moves we get

t = 0 . . . 4 5 2 3 6 1 . . .

t = 1 . . . 4 5 2 1 3 6 . . .

t = 2 . . . 4 5 2 1 3 6 . . .

t = 3 . . . 4 2 5 1 3 6 . . .

t = 4 . . . 4 2 5 1 3 6 . . .

t = 5 . . . 4 2 5 1 3 6 . . .

A soliton is a maximal consecutive increasing sequence of balls that is preserved by all future BBS

moves. A BBS configuration is said to be in steady state when every ball is contained in a soliton.

Theorem 1 (Takahashi [6]): After a finite number of BBS moves, a box-ball system containing a

configuration w ∈ Sn will reach a steady state, decomposing into solitons whose sizes are

weakly increasing from left to right, that is, forming an integer partition of n.

The soliton decomposition of a box-ball system is the tableau in which the first row is the

rightmost soliton, the second row is the next soliton to its left, and so on. We call a permutation

BBS-good, or just good, if its SD is a standard Young tableau. For instance,

SD(452361) = 1 3 6
2 5
4

, and 452361 is good

Robinson-Schensted (RS) correspondence

We will use the Robinson–Schensted insertion algorithm to study the box-ball system. The

Robinson–Schensted (RS) insertion algorithm is a well-studied bijection between permutations

w ∈ Sn and pairs of standard Young tableaux (P(w), Q(w)) of the same shape of size n [5].

For instance 452361 RS7−−→


1 3 6
2 5
4

,
1 2 5
3 4
6


The first tableau is called the insertion tableau and the second is called the recording tableau. It

turns out that the recording tableau largely controls box-ball dynamics.

Theorem 2 (DGG+ [2]): w is good if and only if the shape of SD(w) is the same as the shape of

Q(w).

Theorem 3 (CFG+ [1]): If Q(w) = Q(v), then SD(w) and SD(v) have the same shape.

In light of these theorems, we define a standard Young tableau T to be good when w is good for

any w such that Q(w) = T .

Motzkin numbers

The n-th Motzkin number, denoted Mn is defined by the two term recursion

Mn = Mn−1 +
n−2∑
k=0

MkMn−k−2

with M0 = M1 = 1.

Theorem 4: The good tableaux of size n are counted by the n-th Motzkin

number.

To prove this theorem, we define operations on good tableaux mirroring each component of the

Motzkin recursion, that is, an operation that takes a size n − 1 tableau and returns a size n
tableau, an operation that takes a size n − k − 2 tableau and returns a size n − k tableau, and an

operation that takes a size k and a size n − k tableaux and returns a size n tableau.

A notion of tableau multiplication

To try and recreate the multiplication of the Mk and Mn−k−2 terms in the Motzkin recursion, we

introduce a binary operation for tableaux.

Let T1, T2 be standard Young tableaux of size n1, n2. Let T1 be a tableau of the same shape as T1
but with each value j replaced with j + n1. Define T1×̃T2 as the tableau resulting from placing T1
below T2 and “flushing up” the entries.

If T1 = 1 2 5
3 4

, T2 = 1
2

, then T1 = 3 4 7
5 6

and T1×̃T2 =

1 4 7
2 6
3
5

Proposition 5: T1×̃T2 is good if and only if T1 and T2 are good.

Column bump and rowwrap

Let T be a standard tableau of size n. Construct the column bump of T , denoted bump(T ), to be

T ×̃ 1 . Construct the row wrap, denoted wrap(T ), by increasing every element of T by 1 to get

T ′, and then replacing the first row of T ′ with a copy of the first row but with 1 at the beginning

and n + 2 at the end.

If T =
1 2 3
4 6
5

, then bump(T ) =

1 3 4
2 7
5
6

, wrap(T ) =
1 2 3 4 8
5 7
6

Proposition 6: For a standard Young tableau T , the following are equivalent:

T is good.

bump(T ) is good.
wrap(T ) is good.

AMotzkin class of tableaux

There is a unique decomposition of sorts for tableaux of the form T ×̃wrap(Q) for good tableaux

T, Q as shown in the following proposition.

Proposition 7: Suppose T1, T2, Q1, Q2 are good tableaux such that

T = T1×̃wrap(Q1) = T2×̃wrap(Q2)
Then T1 = T2 and Q1 = Q2.

In light of this proposition, we now recursively define the sets of tableaux Kn as follows. Let

K0 = {∅} and K1 =
{
1
}
where ∅ denotes the empty tableau. Then, for n ≥ 2,

1. for each Q ∈ Kn−1, bump(Q) ∈ Kn

2. for each pair of Q1 ∈ Kk and Q2 ∈ Kn−k−2 for 0 ≤ k ≤ n − 2, Q1×̃wrap(Q2) ∈ Kn

No other tableaux are in Kn.

Theorem 8: For each n ≥ 0, each T ∈ Kn is good and |Kn| = Mn.

This theorem constitutes one direction of the main theorem, i.e. showing there is a class of good

tableaux which are themselves a Motzkin object.

A simple characterization of goodness

We call a subsequence σ of w a k-decreasing subsequence when σ = σ1 t σ2 t . . . t σk with each

σi decreasing or empty. We define dk(w) to be the length of a longest k -decreasing subsequence

of w.

An index i is a descent of w if w(i + 1) < w(i). We define

D(u) :=
{

0 if u is empty

1 + |{descents of u}| otherwise
and Dk(w) := max

w=u1t···tuk

k∑
j=1

D(uj)

The following combines results of Schensted [5], Greene [3], and Lewis et al. [4] to characterize

good permutations.

Theorem 9: A permutation w is good if and only if dk(w) = Dk(w) for each k ≥ 1.

Column-superstandard permutations

To exploit the previous characterization of goodness we introduce a class of permutations with

relatively simple dk, Dk statistics. Given a standard Young tableau Q, define the

column-superstandard permutation of Q as the RS inverse of (CSS(sh Q), Q) where CSS(sh Q) is
the column-superstandard tableau of shape sh Q (see example below):

Q = 1 2 3 6 7 11
4 5 10 22
8 9 14
12 13 17
15 16 21
18 20
19

and CSS(sh Q) = 1 8 14 19 21 22
2 9 15 20
3 10 16
4 11 17
5 12 18
6 13
7

so if v = RS−1(CSS(sh Q)), Q) is the column-superstandard permutation of Q, then v is

v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8) v(9) v(10) v(11) v(12) v(13) v(14) v(15) v(16) v(17) v(18) v(19) v(20) v(21) v(22)
7 (13) (18) 6 (12) (20) (21) 5 (11) (17) (22) 4 (10) (16) 3 9 (15) 2 1 8 (14) (19)

Remark 10: The columns of CSS(sh Q) appear as decreasing subsequences of v, where the

positions of these subsequences are controlled in a simple way by Q.

Lemma 11: Let v be the column superstandard permutation of a standard tableau Q. Then v(m)
is the k-th entry from the bottom of the i-th column of CSS(sh Q) if and only if Q (k, i) = m.

All good tableaux are in Kn

Column-superstandard permutations allow us to prove the following.

Lemma 12: Suppose Q is a good tableau of size n ≥ 2. If Qn−1 is the tableau of size n formed

by removing the entry n from Q, then Qn−1 is good.

Then, using induction, we can use this result to prove the other inclusion of the main theorem.

Theorem 13: Suppose Q is a good tableau of size n. Then Q ∈ Kn.
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