Yale

A new Motzkin object from box-ball systems
Emily Gunawan ${ }^{2}$ Su Ji Hong ${ }^{1}$ Matthew Li ${ }^{1}$ Raina Okonogi-Neth ${ }^{3}$ Mykola Sapronov ${ }^{1}$ Dash Stevanovich ${ }^{1}$ Hailey Weingord ${ }^{4}$
${ }^{1}$ Yale University ${ }^{2}$ University of Oklahoma ${ }^{3}$ Smith College ${ }^{4}$ University of Califiornia, Los Angeles

Abstract

BBS-good tablearx are a class of tableaux arising from box-ball systems. We show that the BBS good tableaux of size n are counted by the n-th Motzkin number.

Box-ball systems
Define the discrete dynamical box-ball system (BBS) of $w \in S_{n}$ as follows.

- Label n balls by the one-line notation of w and place them in an infinite empty strip. Move the ball labeled 1 to the first empty box to its right and vacate the box from which it moved. Repeat in order from 2 to n.
- After all n balls have moved, we have completed a box-ball move and we advance time. This version of the box-ball system was introduced by Daisuke Takahashi in [6] and is an extension of the box-ball system first invented by Takahashi and Junkichi Satsuma in [7]. For example, given $452361 \in S_{6}$, the intermediate steps between $t=0$ and $t=1$ are

$$
\begin{aligned}
& t=0 \ldots \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline & 4 & 5 & 2 & 3 & 6 & 1 & & & \\
\hline & \ldots & 4 & 5 & 2 & 3 & 6 & & & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l}
\hline & 4 & 5 & 2 & 3 & 6 & & 1 & & & \\
\hline & 4 & 5 & & 3 & 6 & 2 & 1 & & & \\
\hline & 4 & 5 & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline & 4 & 5 & & & 6 & 2 & 1 & 3 & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & 5 & 4 & & 6 & 2 & 1 & 3 & & \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|c}
\\
\hline & & & 4 & 5 & 6 & 2 & 1 & 3 & & \\
\hline & & & & 5 & & & & & \\
\hline
\end{array}
\end{aligned}
$$

Evolving the system through several box-ball moves we get

$t=2 \ldots .{ }_{\square}{ }^{-}$

A soliton is a maximal consecutive increasing sequence of balls that is preserved by all future BB moves. A BBS configuration is said to be in steady state when every ball is contained in a soliton. Theorem 1 (Takahashi [6]): After a finite number of BBS moves, a box-ball system containing a configuration $w \in S_{n}$ will reach a steady state, decomposing into solitons whose sizes are weakly increasing from left to right, that is, forming an integer partition of n.
The soliton decomposition of a box-ball system is the tableau in which the first row is the rightmost soliton, the second row is the next soliton to its left, and so on. We call a permutation BBS-good, or just good, if its SD is a standard Young tableau. For instance

$$
\mathrm{SD}(452361)=\begin{array}{|l|l|l}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 & &
\end{array}
$$

Robinson-Schensted (RS) correspondence

We will use the Robinson-Schensted insertion algorithm to study the box-ball system. The We wifl use the Robinson-Schensted insertion algorithm to study the box-ball system. The
Robinson-Schensted (RS) insertion algorithm is a well-studied bijection between permutation $w \in S_{n}$ and pairs of standard Young tableaux ($\mathrm{P}(w), \mathrm{Q}(w)$) of the same shape of size $n[5]$.

$$
\text { For instance } 452361 \xrightarrow{\mathrm{RS}}\left(\begin{array}{|l|l|l}
\hline & 3 & 6 \\
\hline 2 & 5 & \\
\hline 4 &
\end{array}, \begin{array}{|l|l|l}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline 6 & & \\
\hline
\end{array}\right)
$$

The first tableau is called the insertion tableau and the second is called the recording tableau. It turns out that the recording tableau largely controls box-ball dynamics.
Theorem 2 (DGG+ [2]): w is good if and only if the shape of $\operatorname{SD}(w)$ is the same as the shape of Q (w).
Theorem 3 (CFG $+[1]$): If $\mathrm{Q}(w)=\mathrm{Q}(v)$, then $\mathrm{SD}(w)$ and $\mathrm{SD}(v)$ have the same shape In light of these theorems, we define a standard Young tableau T to be good when w is good for any w such that $\mathrm{Q}(w)=T$

Motzkin numbers

A simple characterization of goodness

We call a subsequence σ of w a k-decreasing subsequence when $\sigma=\sigma_{1} \sqcup \sigma_{2} \sqcup \ldots \sqcup \sigma_{k}$ with each σ_{i} decreasing or empty. We define $\mathrm{d}_{k}(w)$ to be the length of a longest k-decreasing subsequence
of w of w.
An index i is a descent of w if $w(i+1)<w(i)$. We define

$$
\mathrm{D}(u):=\left\{\begin{array}{ll}
0 & \text { if } u \text { is empty } \\
1+\mid\{\text { descents of } u\} \mid & \text { otherwise }
\end{array} \quad \text { and } \quad \mathrm{D}_{k}(w):=\max _{w=u_{1} \sqcup \cdots \cup u_{k}} \sum_{j=1}^{k} \mathrm{D}\left(u_{j}\right)\right.
$$

The following combines results of Schensted [5], Greene [3], and Lewis et al. [4] to characterize good permutations.
Theorem 9: A permutation w is good if and only if $\mathrm{d}_{k}(w)=\mathrm{D}_{k}(w)$ for each $k \geq 1$.
Column-superstandard permutations

To exploit the previous characterization of goodness we introduce a class of permutations with elatively simple $\mathrm{d}_{k}, \mathrm{D}_{k}$ statistics. Given a standard Young tableau Q, define the el

So if $\left.v=\mathrm{RS}^{-1}(\operatorname{CSS}(\operatorname{sh} Q)), Q\right)$ is the column-superstandard permutation of Q, then v is
 Remark 10: The columns of $\operatorname{CSS}(\operatorname{sh} Q)$ appear as decreasing subsequences of v, where the positions of these subsequences are controlled in a simple way by Q.

Lemma 11: Let v be the column superstandard permutation of a standard tableau Q. Then $v(m)$ is the k-th entry from the bottom of the i-th column of $\operatorname{CSS}(\operatorname{sh} Q)$ if and only if $Q(k, i)=m$.

All good tableaux are in K

Column-superstandard permutations allow us to prove the following.
Lemma 12: Suppose Q is a good tableau of size $n \geq 2$. If Q_{n-1} is the tableau of size n formed by removing the entry n from Q, then Q_{n-1} is good.
Then, using induction, we can use this result to prove the other inclusion of the main theorem. Theorem 13: Suppose Q is a good tableau of size n. Then $Q \in K_{n}$.

Acknowledgements

This work was supported by the Summer Undergraduate Math Research at Yale (SUMRY 2022) program and the NSF References
There is a unique decomposition of sorts for tableaux of the form $T \widetilde{\times}$ wrap (Q) for good tableaux T, Q as shown in the following proposition.
Proposition 7: Suppose $T_{1}, T_{2}, Q_{1}, Q_{2}$ are good tableaux such that

$$
T=T_{1} \widetilde{\times} \operatorname{wrap}\left(Q_{1}\right)=T_{2} \widetilde{\times} \operatorname{wrap}\left(Q_{2}\right)
$$

Then $T_{1}=T_{2}$ and $Q_{1}=Q_{2}$.
In light of this proposition, we now recursively define the sets of tableaux K_{n} as follows. Let $K_{0}=\{\emptyset\}$ and $K_{1}=\{1\}$ where \emptyset denotes the empty tableau. Then, for $n \geq 2$,

1. for each $Q \in K_{n-1}, \operatorname{bump}(Q) \in K_{n}$
2. for each pair of $Q_{1} \in K_{k}$ and $Q_{2} \in K_{n-k-2}$ for $0 \leq k \leq n-2, Q_{1} \widetilde{\times}$ wrap $\left(Q_{2}\right) \in K_{n}$ No other tableaux are in K_{n}.
Theorem 8: For each $n \geq 0$, each $T \in K_{n}$ is good and $\left|K_{n}\right|=M_{n}$
This theorem constitutes one direction of the main theorem, i.e. showing there is a class of good tableaux which are themselves a Motzkin object.

$$
M_{n}=M_{n-1}+\sum_{k=0}^{n-2} M_{k} M_{n-k-2}
$$

with $M_{0}=M_{1}=1$.
Theorem 4: The good tableaux of size n are counted by the n-th Motzkin number.
To prove this theorem, we define operations on good tableaux mirroring each component of the Motzkin recursion, that is, an operation that takes a size $n-1$ tableau and returns a size n operation that takes a size k and a size $n-k$ tableaur and returns a size n tableauleau, and a

A notion of tableau multiplication

To try and recreate the multiplication of the M_{k} and M_{n-k-2} terms in the Motzkin recursion, we introduce a binary operation for tableaux
Let T_{1}, T_{2} be standard Young tableaux of size n_{1}, n_{2}. Let $\overline{T_{1}}$ be a tableau of the same shape as T_{1} but with each value j replaced with $j+n_{1}$. Define $T_{1} \widetilde{\times} T_{2}$ as the tableau resulting from placing $\overline{T_{1}}$ below T_{2} and "flushing up" the entries.

Proposition 5: $T_{1} \widetilde{\times} T_{2}$ is good if and only if T_{1} and T_{2} are good.

Column bump and row wrap
Let T be a standard tableau of size n. Construct the column bump of T, denoted bump (T), to be $T \widetilde{\widetilde{x}}$ 1. Construct the row wrap, denoted wrap (T), by increasing every element of T by 1 to get T^{\prime}, and then replacing the first row of T^{\prime} with a copy of the frst row but with 1 at the beginnin

If $T=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 6 | |
| 5 | | |
| | | | , th

- T is good
- $\operatorname{bump}(T)$ is good
- wrap (T) is good

A Motzkin class of tableaux

