17.8 Divergence Theorem

Application: A vector field can represent movement of liquid. The amount of water that passes acros the barrier of a cell per minute can membrane be computed using flux integral SF. AS surface integral of a vector field Sec 17.6 Recall Green's Theorem (flux form) for F= (f,g> think fluid flow flux across C (net flow across) = cumulative effect of boundary of R) = the sources/sinks of the flow within R Divergence Theorem $D: a region in \mathbb{R}^3$, $\overline{F} = \langle f, g, h \rangle$ S: surface which is the boundary of D (normal vectors point outward) $\iint_{dv} \overline{F} = fx + gy + h_{z}$ Then ∬ È.i dS = S LHS: outward flux of F, surface integral of a vector field (KHS: triple integral (Sec 17.6)

Ex 2: Let
$$\vec{F} = \langle -y, x^{-y}, y \rangle$$
. We divergence Theorem to
find the outward flux across the closed surface
S: the upper hemisphere $x^{L} + y^{2} + z^{2} = 7$ for $z \gg 0$
together with its base in the xy-plane.
 \vec{f}_{3}^{Z}
Sol: To compute flux $\iint \vec{F} \cdot \vec{n} \, dS$ directly,
we need to compute two surface integrals,
for the hemisphere and its base.
Using Divergence Theorem, we have $\iint \vec{F} \cdot \vec{n} \, dS = \iint dV \neq dV$
where D is the region in S
 $div \vec{F} = \nabla \cdot \vec{F} = fx + gy + h_{Z} = D + 0 + 0$
 $\vec{F} = \iint o \, dV = 0$
D
 $\vec{F} lux across S is 0.$

Ex (HML #4)
Use the Divergence Theorem to compute the net outward flux
of
$$\vec{F} = (-x, 3y, z)$$
 across the sarface S , where S is
the boundary of the tetahedron in the first octant
formed by the plane $X + y + z = l$.
Sol:
 $z = l - x - y$
 $z = l = x -$