17.7 Stokes' Theorem

Recall Green's Thm connects circulation and double integral: (circulation form) $\oint_{C} \langle f_{i}g \rangle \cdot d\bar{r} = \iint_{R} \left(\widehat{g}_{x} - f_{y} \right) dA$ Double 2D (5 pos curl contribution integral over along C $= \iint \left(\nabla \times \langle f, q, o \rangle \right) \cdot \stackrel{?}{k} dA \qquad \text{in } \mathbb{R}^2$ (Sec 16.2-16.3) Curve C, boundary of R, Always counterclockwise (viewed from above) Now, instead of region R in \mathbb{R}^2 , we have surface S in \mathbb{R}^3 . curl An positive contribution curve C, boundary of S Let $\vec{F} = \langle f, q, h \rangle$ be a vector field, Stokes' Theorem S is an oriented surface (pick which direction is "up"), C is the curve which is the boundary of S ∮ F.dř $= \iint \left(\nabla \times \vec{F} \right) \cdot \vec{n} \, dS$ ZD still circulation RHS surface integral (Sec 17.6) LHS along C Same meaning as before: Net circulation on boundary of S = sum of "rotation" of F

Here it is the unit vector normal to S. Direction of it is determined by orientation of S (which way is "up"). S and C are related by the Right-hand rule: Curl your right hand in the positive direction around C. Then your thumb points in the general direction of which way is "up".

The vector \vec{n} points in the same direction as your thumb. In this situation, we say that \vec{n} is <u>consistent</u> with the orientation of C.

Lecall IF
$$\vec{F}$$
 is conservative, then $\vec{F} = \nabla Q$ for some Q ,
(Sec 17.5) \vec{S} or $\text{curl } \vec{F} = \nabla \times \vec{F} = \nabla \times \nabla Q = 0$.
So $\oint_C \vec{F} \cdot d\vec{r} = 0$: circulation is zero on all closed curves
ino work is done in moving an object on
a closed path.

(old Final Exam Sp 21) 9. (10 Pts) Given the vector field $\vec{F} = \langle z - y, x + y, z \rangle$, use Stokes' Theorem to compute $\iint_{S} (\vec{\nabla} \times \vec{F}) \cdot \vec{n} \, dS$ where S is that portion of the elliptic paraboloid $z = 4 - \frac{x^2}{4} - y^2$ that is above the xy-plane. Assume that \overline{n} points upward. One of the ways to "use Stokes' Thm" is to convert difficult surface integral into easier line integral: Stokes' Theorem Says $\iint (\nabla \times \tilde{F}) \cdot \tilde{n} dS = \oint \tilde{F} \cdot d\tilde{r}$ where C S curl C is the boundary of S. C is the intersection of S and the xy-plane (z=o): $0 = 4 - \frac{x^{2}}{4} - y^{2} \implies 4 = \frac{x^{2}}{4} + y^{2} \implies l = \frac{x^{2}}{l_{6}} + \frac{y^{2}}{4}$ A parametrization of C is $\vec{r}(t) = \langle 4\cos t, 2\sin t, 0 \rangle$ for $0 \leq t \leq 2\pi$ $\vec{r}'(t) = \langle -4 \text{ sint}, 2 \cos t, o \rangle$ $\oint \vec{F} \cdot d\vec{r} = \int (z-y)(-4\sin t) + (x+y)(2\cos t) + z(0) dt$ $= \int 2\pi = \int 8\sin^2 t + 8\cos^2 t + 4\sin t \cos t dt$ $= \int 8\sin^2 t + 8\cos^2 t + 4\sin t \cos t dt$ Sin(2t) (or use u-substitution) $= \int_{0}^{2^{\prime\prime}} 8 + 2 \sin(2t) dt = 8t - \frac{2}{2} \cos(2t) \bigg|_{1-1}^{2-1}$ $= 8(2\pi) - \cos(4\pi) - \left[0 - \cos(6)\right] = 16\pi$

Ex 2 Use Stokes' Theorem to compute the line
integral
$$\oint F.d\bar{r}$$
 (circulation) of the vector
field $F = z_1^2 - z_1^2 + (x_2^2 - y_2) \hat{k}$, where C is the closed
triangular path starting at point A(2,00),
to B(0,4,0), to D(0,0,0) and back to A(2,00).
Sol: $\oint_C F.d\bar{r} = \iint (\nabla x F) \cdot n \, dS$ (Shkes' Thn)
Sketch C:
D(n,0,0) S (Choose a surface S such
that C is the boundary.
Since C lives in a plane,
we can choose S to be
A(2,0,0) S (0,4,0) we can choose S to be
A(2,0,0) S (0,4,0) S (13.5 brus x planes:
To find a normal vector to S, take $\overline{AB} \times \overline{AD} = \begin{bmatrix} 1 & j & k' \\ -2 & 4 & 0 \\ -2 & 0 & 8 \end{bmatrix}$
Equation of plane S is: (normal vecher) $\overline{AP} = 0$
Size - C theorem of the start of the second sec

Compute normal vector of S: $\langle -z_x, -z_y, 1 \rangle = \langle +4, +2, 1 \rangle$ This vector is pointing "up", consistent of orientation of C (using right-hand rule) D(o, o, B)S $\mathcal{L}(o, 4, o)$ y so use this. A(2,0,0) 1 X Curl $\vec{F} = \nabla \times \vec{F} = \langle -2y+1, 1-2x, 0-0 \rangle = \langle -2y+1, 1-2x, 0 \rangle$ fy hy fz gz $\vec{F} = \left\langle z, -z, x^2 + y^2 \right\rangle$ $f \qquad g \qquad h$ $\iint_{S} \left(\nabla \times \vec{F} \right) \cdot \vec{n} \, dS = \iint_{R} \left\{ -2y + 1, 1 - 2x, 0 \right\} \cdot \left\{ 4, 2, 1 \right\} \downarrow A$ $= \int \int (-8y+4) + (2-4x) dy dx$ inner -2x+4 $= -4(-2x+4)^{2} + (-2x+4)(6-4x)$ $= -4(4x^{2} - 16x + 16) - 12x + 8x^{2} + 24 - 16x$ $= -16x^{2} + 64x - 64 - 28x + 8x^{2} + 24$ $= -8 \times 2 - 36 \times - 40$ $\underbrace{\operatorname{outer}}_{0}: \int_{0}^{2} -\vartheta x^{2} + 36x - 40 \quad dx = -\vartheta \frac{x^{3}}{3} + 36x^{2} - 40 \times \left| \begin{array}{c} x = 2 \\ z = -\vartheta \vartheta \\ x = 0 \end{array} \right| = -\frac{\vartheta \vartheta}{3}$ Negative circulation means net circulation is the opposite (clockwise) direction of C, looking

above.

from