

Def A vector field
$$\vec{F}$$
 is called conservative
on a region R if $\vec{F} = \nabla \varphi$ for some scalar
function on that region.

The CTest for Conservative Vector fields)

Suppose $\vec{F} = \langle f, g, h \rangle$ is a vector field defined on a
connected and simply connected region D of R³.

 \vec{F} is a conservative vector field on D iff
 $f_y = \vartheta x$ $f_z = hx$ $\vartheta_z = hy$

 $f_x = \vartheta x$ h_x
 $f_y = \vartheta x$ h_z

For $\vec{F} = \langle f, g \rangle$ in \mathbb{R}^2 , we just need to check whether $fy = 9 \times$

Ex 1 (a) and Ex 2(a)

$$\vec{F} = (e^{x} (os y), -e^{x} sin y)$$

 $f(x,y)$
 $f(x$

Ex 1(b) and 2(b)

$$\vec{F} = \langle 2 \times y - z^{2}, x^{2} + 2z, 2y - 2xz \rangle$$

$$f \qquad y = 2x$$

$$f_{x} = 2x$$

$$h_{x} = -2z$$

$$f_{y} = 2x$$

$$f_{z} = -2z$$

$$f_{z}$$

(3) To find
$$C(y,z)$$
, take antiderivative of $\frac{\partial}{\partial y}C(y,z)$ with y:
 $C(y,z) = \int 2z \, dy = 2zy \pm d(z)$
the "constant" is a function of z
Note: At this point, $P(x,y,z)$ looks like $x^2y - z^2x \pm \frac{C(y,z)}{2zy \pm d(z)}$
(4) Differentiate current P with $z : P_{zz} - 2zx \pm 2y \pm d(z)$
Set it equal to h: $2y - 2xz = -2zx \pm 2y \pm d'(z)$
find $d'(z)$: $d'(z) = 0$
So $d(z)$ can be any number
So let $d(z) = 0$ (for simplicity)
So a potential function that works is $P = x^2y - z^2x \pm 2zy$
Check: $\nabla Q = \langle 2xy - z^2, x^2 \pm 2z, -2zx \pm 2y \rangle \leq \overline{F}$

Fundamental Thm (FT)
Recall
$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$
 (FT of GICI)
FT for line integrals
If a vector field \hat{F} is conservative on R
(meaning $\hat{F} = \nabla Q$ for come Q), then
two ways of writing the line integral
 $\int_{C} \hat{F} \cdot \hat{T} dS = \int_{C} \hat{F} \cdot d\hat{r} = Q(B) - Q(A)$
for all points A, B in R and all
piecewise-smooth oriented curves C
in R from A to S.
Observe Suppose \hat{F} is conservative on R.
If C is a closed curve,
 $\int_{C} \hat{F} \cdot d\hat{r} = \varphi(A) - \varphi(A) = O$
 $\int_{C} \hat{F} \cdot d\hat{r} = \varphi(A) - \varphi(A) = O$

Def A line integral
$$\int_{C} \vec{F} \cdot d\vec{r}$$
 is called independent of path
if $\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r}$ for all piecewise-smooth curves C_{1}
wy the same initial and terminal points. G_{1}

If all line integrals of \vec{F} $\left(\int_{C} \vec{F} \cdot d\vec{r}\right)$ are independent of path then \vec{F} is conservative (meaning $\vec{F} = DCP$ for some potential function q).

$$E \times 4$$
: Given a force field $\overline{F} = \langle 2 \times y - z^2, x^2 + 2z, 2y - 2xz \rangle$

Find the work required to move an object
from the point
$$(-3, -2, -1)$$
 to $(1, 2, 3)$ following an
oriented curve C.
Sol:
In Ex1R2(b), we checked that \vec{F} is conservative
and $\vec{F} = \nabla Q$ for $Q = X^2 y - X z^2 + 2yz$.
By FT for line integrals,
 $\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla Q \cdot d\vec{r} = 0$ (B) - $Q(A) = Q(1, 2, 3) - Q(-3, -2, -7)$
 $= 2 - 3^2 + 2(2)(3) - [9(-2) - (-3)(1) + 2(-2)(-7)] = 16$
By def, work is $\int_C \vec{F} \cdot d\vec{r} = 16$