17.2 Line integrals

$$f_{2}pic$$
notationintegrate over...Single: var Calc $\int_{a}^{b} f(G) dx$ interval [a,b] in real linedouble integral $\iint_{a} f(G, y) dA$ 2D region R double integral $\iint_{R} f(G, y) dA$ 2D region R triple integral $\iint_{R} f(G, y, z) dV$ 3D region in D R^3 Application:
wrenge, vol, area, mass X Y (New) S colar
Line integral $\int_{a} f ds$ a curve C in R^2 (New) S colar
Line integral $\int_{a} f ds$ a curve C in R^2 (Should really be
Galled "curve integral" C Y or "path integral" C Y

or curve (in 12

$$\frac{J_{-}(Scalar) \text{ line integral}}{What is} \int_{C} f \, ds \, \delta$$

$$f(x,y) \text{ is a function } w/ \text{ input points in } \mathbb{R}^{2}$$
and outputs are numbers in \mathbb{R}

$$Cut \ C \text{ into } \text{ parts } w/ \text{ equal length } ds \, \delta$$

$$representative \text{ point in each part}} (to make it simple, choose the earliest point)$$

$$(X_{2}, y_{2})$$

$$(X_{3}, y_{2})$$

$$(X_{3}, y_{3})$$

$$(X_{3}, y_{3})$$

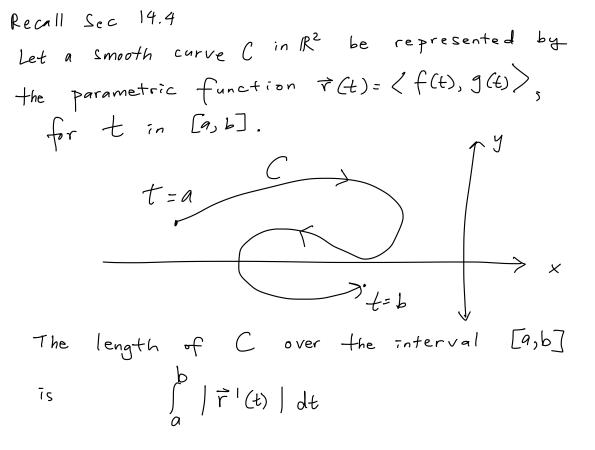
$$(X_{3}, y_{3})$$

$$(X_{3}, y_{3})$$

$$(X_{3}, y_{3})$$

Take sum $\Delta S \left[f(x_1, y_1) + f(x_2, y_2) + \dots \right]$

The limit of this sum as $n \rightarrow \infty$. If the limit exists, it's denoted $\int_C f \, ds$. We say f is integrable on C.



Procedure for evaluating line integral
$$\int_C f \, ds$$

(1) Choose a parametric description of C
 $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $a \le t \le b$.
(2) Compute $|\vec{r}'(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$

3)
$$\int_{C} f \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \left| \vec{r}'(t) \right| dt$$
single-variable integral

Ex 1: The temperature of the circular plate

$$R = [(x,y): x^{2} + y^{2} \le 1] \text{ is } f(x,y) = 100 (X^{2} + 2y^{2})$$
Find the average temp along the perimeter of the plate.
Sol: R from Boundary of R is circle $C = [(x,y): x^{2} + y^{2} = 1]$
Average value of f over C is $\frac{1}{\text{length of } C} \int_{C} f ds$
(1) Choose a parametric description of C:
 $\vec{r}(t) = \langle \cos t, \sin t \rangle$ for $p \le t \le 2\pi$
 $\vec{r}'(t) = \langle -\sin t, \cos t \rangle$
 $|\vec{r}'(t)| = \sqrt{-\sin t^{2} + (\cos t)^{2}} = \sqrt{1} = 1$

$$\frac{3}{5} \int_{C} f \, ds = \int_{0}^{2\pi} \frac{100 \left(x(t_{0}^{2} + 2t_{0}^{2}t_{0}^{2}) \int r^{2}(t_{0}) \right) \, dt}{f(t)} = \frac{100}{5} \int_{0}^{2\pi} \cos^{2}(t_{0}) + 2 \sin^{2}(t_{0}) \, dt$$

$$= 100 \int_{0}^{2\pi} \left(\cos^{2}(t_{0}) + 2 \sin^{2}(t_{0}) + \sin^{2}(t_{0}) \right) \, dt$$

$$= 100 \int_{0}^{2\pi} \left(\cos^{2}(t_{0}) + 2 \sin^{2}(t_{0}) + \sin^{2}(t_{0}) \right) \, dt$$

$$= 100 \int_{0}^{2\pi} \left(\cos^{2}(t_{0}) + 2 \sin^{2}(t_{0}) + \sin^{2}(t_{0}) \right) \, dt$$

$$= 100 \int_{0}^{2\pi} \left(1 + \frac{1}{2} - \frac{\cos(2t)}{2} \right) \, dt$$

$$= 100 \int_{0}^{2\pi} \left(1 + \frac{1}{2} - \frac{\cos(2t)}{2} \right) \, dt$$

$$= 100 \int_{0}^{2} \left(2\pi \right) - \frac{1}{2} \frac{\sin(2t)}{2} \right) \left| \frac{t^{2}}{t_{0}}^{2\pi} \right| \, dt$$

$$= 100 \frac{3}{2} \left(2\pi \right) = 300 \, \pi$$
Length of the circle is $2\pi (radius) = 2\pi$
Average temp is $\frac{1}{2\pi} \left(300 \, \pi \right) = 150$

.

I. Line integrals of vector fields
Sec 13.3:

$$\begin{array}{c} \underbrace{13.3:}_{P_{\overline{T}}} \\ \underbrace{13.3:}_{P_{\overline{T}}} \\ \underbrace{15.7}_{P_{\overline{T}}} \\ \underbrace{15.9}_{P_{\overline{T}}} \\ \underbrace{15.9}_{P_{\overline{T}$$

How to compute the line integral of
$$\vec{F}$$
 over $C(symbol: \int_C \vec{F}, \vec{T} ds)$:
Consider a vector field $\vec{F}(x, y) = \langle f(x, y), g(x, y) \rangle$
Consider a curve C with a parametrization $\vec{r}(t) = \langle x(t), y(t) \rangle$
for $a \leq t \leq b$.

$$\int_{C} \vec{F} \cdot \vec{T} \, ds = \int_{a}^{b} \vec{F} \cdot \vec{r}'(4) \, dt$$

$$= \int_{a}^{b} \langle \vec{f}(4), g(4) \rangle \cdot \langle \times \langle 4 \rangle, g'(4) \rangle \, dt$$

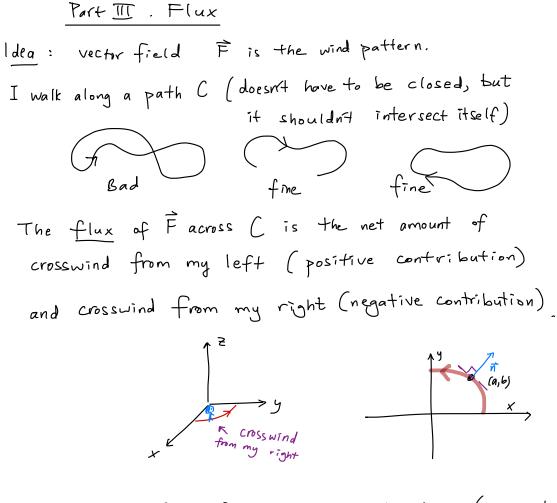
$$= \int_{a}^{b} \left(\vec{f}(4) \times \langle 4 \rangle + g(4) g'(4) \right) \, dt$$

Note: Other notations for line integral of a vector field

$$\int_{C} \vec{F} \cdot \vec{T} \, ds = \int_{C} f \, dx + g \, dy \qquad \begin{pmatrix} Let \\ dx = x'(t) \, dt, \, dy = y'(t) \, dt \end{pmatrix}$$

Q1: What is the circulation of the vector field
$$F = \langle -y, x \rangle$$

on C, the unit circle with counterclockwise orientation?
Q2: Given the force field $\overline{F} = \langle -y, x \rangle$,
what is the work required to move an object from (0,0)
back to itself following C?
Answer: Q1 & Q2 have the same answer: $\int_C \overline{F} \cdot \overline{T} \, ds$
To compute $\int_C \overline{F} \cdot \overline{T} \, ds$, choose a parametrization of C:
 $\overline{r}(t) = \langle \cos t, \sin t \rangle$ for $0 \le t \le 2\pi$.
 $\int_C \overline{F} \cdot \overline{T} \, ds = \int_0^{2\pi} \overline{F} \cdot \overline{r}(t) \, dt$
 $= \int_0^{2\pi} \langle -\sin t, \cos t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt$
 $\overline{F} = \langle -y, x \rangle$
 $= \int_0^{2\pi} (\sin t)^2 + (\cos t)^2 \, dt$
 $= \int_0^{2\pi} 1 \, dt$
 $= 2\pi$



At each point (a,b) on C, there are two directions (on xy-plane) that are perpendicular to the line tangent to C at (a,b), that is, pointing away from my right shoulder and pointing away from my left shoulder. **Choose this direction** Let \bar{n} be the unit vector pointing to the right of point (a,b) (when viewed from above).

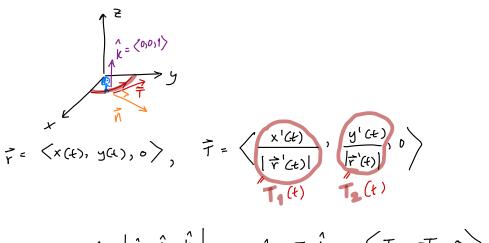
Note: If
$$\vec{F}$$
 and \vec{n} are both pointing "outward",
 $\vec{F} \cdot \vec{n}$ is positive.
 $\vec{F} \cdot \vec{n}$ is positive.
This is why crosswind from my left
gives positive contribution.
If one of them is pointing outward
and the other points inward,
 $\vec{F} \cdot \vec{n}$ is negative.
This is why crosswind from my
right gives negative contribution

 $\frac{\text{Def}(\text{Flux})}{\text{Let} \quad \vec{F} = \langle f, g \rangle} \text{ be a vector field of } \mathbb{R}^2.$ Let C be an oriented curve. Choose a parametrization $\text{of } (: \vec{r}(t) = \langle x(t), y(t) \rangle, \text{ for } a \leq t \leq b.$ $\text{The } flux \text{ of } \vec{F} \text{ across } C \text{ is } \int_{C} \vec{F} \cdot \vec{n} \text{ ds}$

Note:

If C is a closed curve with counterclockwise orientation, \overline{n} is the unit normal vector pointing outward, so we say $\int_{C} \overline{F} \cdot \overline{n} \, ds$ gives the outward flux across C.

How to compute
$$\vec{n}$$
? $\vec{n} = \vec{T} \times \hat{k}$



$$\vec{n} = \vec{T} \times \vec{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ T_1 & T_2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = T_2 \hat{i} - T_1 \hat{j} = \langle T_2, -T_1, 0 \rangle$$
$$= \frac{\langle y'(t_1), -x'(t_1), 0 \rangle}{|\vec{r}'(t_1)|}$$

How to compute the flux integral?

$$\begin{bmatrix} F \cdot \vec{n} \, ds = \int_{a}^{b} \langle f_{i}g \rangle \cdot \frac{\langle y'(t), x'(t) \rangle}{|\vec{r}'(t)|} \quad \int_{a}^{b} \frac{ds}{|\vec{r}'(t)|} dt$$

$$= \int_{a}^{b} \langle f, g \rangle \cdot \langle y'(t), -x'(t) \rangle dt$$

= $\int_{a}^{b} f(t) y'(t) - g(t) x'(t) dt$

EX 8 (b) Going back to Ex 6 (b) f g F (x,y)= <- y,x > C A C is counterclock unit circle "rotation Vector field" we computed line integral of Fover C (circulation) we computed line integral of Fover C (of Fonc) * Earlier, $\int \vec{F} \cdot \vec{\tau} \, ds = 2\pi$ The wind is always tailwind on my back, so the circulation is exactly the length of C * Now, lexpect Sc F.n ds (called out ward) flux of Facross () to be O because there is no wind from my left or my right (all wind is tangent to C). Do the actual computation: $\vec{r} = \langle \cos t, \sin t \rangle, \quad 0 \leq t \leq 2\pi$ $\overline{r}' = (-\sin t), \quad \cos t >$ $\int_{C} \vec{F} \cdot \vec{n} \, ds = \int_{a}^{b} f \dot{y}' - g x' \, dt = \int_{b}^{c} -(sint)(cost) - (cost)(cost) \, dt$ $-y = \int_{0}^{2\pi} dt = 0$, as lexpected.

For

$$Ex6(a)$$
 $C \rightarrow F(x,y) = \langle x,y \rangle$ | expect the outward
 $flux \int_C F \cdot \vec{n} \, ds$ to be
"radial"
vector field"
 F is always pointing in the
same direction as \vec{n} .
Wind is always coming from
my left (pos contribution).