17.1 Vector fields

$$R = [all real numbers] \quad identify with point on \qquad filling with point on \qquad filling with points k vectors in xy-plane for xy = [(x,y): x,y,iz are real numbers] we can identify with points k vectors in xy-plane for xy = [(x,y,z): x,y,iz are real numbers] - ii - ii - xyz-space filling xyz-space fill$$

(or real-valued)
A scalar-
Valued function of two or three variables
$$F(x,y)$$
 or $F(x,y,z)$
 $Ex: F(x,y) = 4e^{xy}$
domain of F: points in R^2 or R^3
range/image of F: numbers (i.e. scalar) in R

Now Ch 17: Vector field has domain in R² (or both domain and and range/image also in R² (arge in R³)

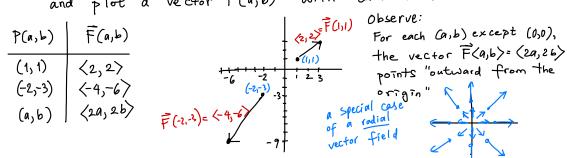
$$\underline{\text{Def}} \ A \ \underline{\text{vector field}} \ \text{in } \mathbb{R}^2 \text{ is a function } \overline{F} \ \text{written as} \\ \overline{F}(x,y) = \langle f(x,y), g(x,y) \rangle \text{ or} \\ \overline{F}(x,y) = f(x,y) \ \hat{i} + g(x,y) \ \hat{j} \\ \cdot \text{ domain of } \overline{F} : \mathbb{R} : \{ (x,y) : f(x,y) \text{ is defined} \} \text{ in } \mathbb{R}^2 \\ g(x,y) \ \text{is defined} \ \hat{j} \ \text{ in } \mathbb{R}^2 \\ \cdot \text{ range /image of } \overline{F} \text{ is in } \mathbb{R}^2 \\ \text{Say that } \overline{F} \ \text{is continuous on a region } \mathbb{R} \text{ of } \mathbb{R}^2 \ \text{ if} \\ f \ \text{ and } g \ \text{ are both } \ Continuous \text{ on } \mathbb{R}. \\ \end{array}$$

Note:

We carry visualize a vector field in its entirety, but we can plot a representative sample of vectors that illustrates the general appearance of the vector field. Ex: Sketch the vector field

$$\vec{\mathsf{F}}(x,y) = \langle 2x, 2y \rangle = 2x\hat{i} + 2y\hat{j}$$

Sol: Select some points P(a,b) in domain of F, and plot a vector $\overline{F}(a,b)$ with tail at P(a,b):



Ex 1(b) Sketch the vector field
$$\overline{F}(x,y) = \langle 1-y^2, 0 \rangle$$

for $|y| \leq 1$
Sol: The domain of \overline{F} is $\{(x,y): x \text{ any real number,} \\ -1 \leq y \leq 1 \}$.
Because there is no "x" in the formula for \overline{F} , this
vector field is independent of x. This means if you
shift your point to the left or right (without
changing the height), your vector doesn't change.
(6,0)
 $\overline{F}(0,0) = \langle 1,0 \rangle$ $\overline{F}(5,0) = \langle 1,0 \rangle$
Since $1-y^2 > 0$ for $|y| < 1$, all vectors point in the
positive x-direction in this region
 $1-y^2 \in \mathbb{R}^{1/2}$ and y-1

This vector field might model the flow of water in a channel.

Gradient fields & potential functions
One way to generate a vector field is to

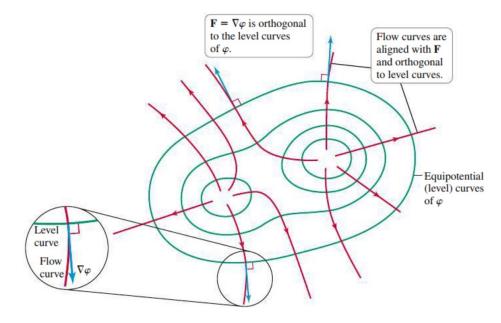
$$D$$
 start with a differentiable
scalar-valued function in two variables $Q(x,y)$,
 Q -take its gradient $\nabla Q(ky)$ (Ch 15)
 Q -take its gradient $\overline{P} = \nabla Q$.
A vector field \overline{P} defined this way is called a
gradient field, and Q is called a potential function
Ex 4: $Q(x, y) = 200 - x^2 - y^2$ with domain $R = [(x,y): x^2 + y^2 \le 2s]$
Then the gradient field \overline{P} associated with
potential function Q is
 $\overline{P}(x,y) = \langle Qx, Qy \rangle = \langle -2x, -2y \rangle$
 $F(x,y) = \langle Qx, Qy \rangle = \langle -2x, -2y \rangle$
 $At the boundary, |\overline{F}| = 2\sqrt{2s} = 10.$
Note: If $Q(x,y)$ is a temperature function, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the gradient field \overline{P} gives, at each point, then
the magnitude of the vector is the rate of the increase.
Note: Disk is coolest on the boundary.
Disk is hottest (200') at the center.

Given a scalar-valued (potential) function (P(x,y), consider the surface z = Q(x,y). Back in Ch 15, we can represent this surface by level curves in the xy-plane A level curve of Q is the (2D) curve Zo = Q (x,y) in the xy-plane where zo is in the image/ range of CP. $\{ \chi: \varphi(\chi, y) = \frac{\chi^2}{2^2} + \frac{y^2}{2^2} \quad \text{Range of } \varphi = [0, \infty]$ (meaning Zo must be 0 or bigger) Level curve for $z_0 = 1$: $1 = \frac{x^2}{2^2} + \frac{y^2}{3^2}$ Level curve for $z_0 = 4$: $4 = \frac{x^2}{4} + \frac{y^2}{9}$ $\Leftrightarrow 1 = \frac{x^2}{16} + \frac{y^2}{36}$ New Def The equipotential curves of a potential function Q(x,y) are the level curves of Q. Fact At each point (a, b) on a level curve of Q, the gradient VQ (q,b) is orthogonal (perpendicular) to the level curve The vector field $\mathbf{F} = \nabla \varphi$ is orthogonal to the level curves of φ at (x, y). y, $\mathbf{F} = \nabla \varphi(x, y)$ (x, y)(x, y) $\nabla \varphi(x, y)$

> Level curves of $z = \varphi(x, y)$

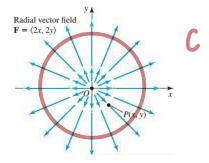
 $\nabla \varphi(x, y)$

This also means ... The (gradient) vector field $\dot{F} = \nabla \phi$ is orthogonal to the equipotential curves everywhere. Cartoon:



Procedure for finding where
$$\overline{F}$$
 is normal or
tangent to a curve:
Consider a vector field \overline{F} in \mathbb{R}^2 and a curve C
in the xy-plane. How to find where \overline{F} is normal or
tangent to C:
(1) Think of C as a level curve $\overline{z}_0 = \mathcal{P}(x, y)$
in the xy-plane of a surface $\overline{z} = \mathcal{P}(x, y)$
(2) Compute the gradient $\nabla \mathcal{Q}(x, y)$.
(3) Note to self: At each point (a,b) on the curve C,
the gradient vector $\nabla \mathcal{P}(a, b)$ is orthogonal/perpendicular
to the line tangent to C at (a, b) .
(4) Find (a, b) such that $\overline{F}(a, b) = k \nabla \mathcal{Q}(a, b)$ for nonzero
(means vector $\overline{F}(b, b) = k \nabla \mathcal{Q}(a, b)$ for nonzero
(means vector $\overline{F}(b, b) = k \nabla \mathcal{Q}(a, b)$)
Then cubstitute into C to solve for a, b .
(5) Find (a, b) cuch that $\overline{F}(a, b) \cdot \nabla \mathcal{Q}(a, b) = 0$
(means vector $\overline{F}(a, b)$ is perpedicular to $\nabla \mathcal{Q}(a, b)$)
Then cubstitute into C to solve for a, b .

 $E \times 2 / MML #4$ (Additional Example) Consider the vector field $\vec{F}(x,y) = \langle 2 \times, 2 \ y \rangle$ and the curve $C = \{(x,y) : x^2 + y^2 = 9\}$ i) sketch C and a few representative vectors of \vec{F} .



1) At which points of the curve C is F tangent to C? From the sketch, we can guess the answer is = The vector field is tangent to C at no points. To find where \$ is tangent to C: 1) Think of C as a level curve zo = CP (x,y) of a surface Z = Q(X,y) $9 = x^2 + y^2$ So Q(X,y)= ײ+y2 ₹ = X²+ 42 (2) Compute $\nabla Q(X, y) = \langle 2X, 2y \rangle$ 3 Note to self: At each point (a,b) on C, DQ (a,b) = <2a,2b> is orthogonal to the line tangent to C at (a,b). (5) Solve F(a, b). ∇Q(a, b)=0 $\langle 2a, 2b \rangle \cdot \langle 2a, 2b \rangle = 0 \Rightarrow 4a^2 + 4B = 0 \Rightarrow a=0, b=0$ The point (0,0) is not on C, so there are no points where È is targent to C.