16.4 Triple integrals

Let D be a region in R³ D = { (x,y,z): a < x < b, q (x) < y < h (x), G (x,y) < z < H (x,y) }

Let f (x, y, z) be a function which is continuous over the region D.

can be computed as the iterated integral $\iint_{C(x,y)} f(x,y,z) dz dA$

or
$$\int_{\alpha}^{b} \int_{\beta(x,y)}^{h(x)} \int_{\beta(x,y)}^{\beta(x,y)} \int_{\beta(x,y)}^{\beta(x,y)} dz dy dx$$

$$D = \{(x,y,z): a \le x \le b, \quad q(x) \le y \le h(x), \quad G(x,y) \le z \le H(x,y)\}$$
outer integral
middle integral
inner integral

Ex 1 (Mass of a box) A solid box D is bounded by the planes x=0, x=3, y=0, y=2, z=0, z=1.

The density of the box is given by f(x,y,z)=2-z.

(The density decreases in the positive z=1 direction.)

Then the mass of the box is $M=\int \int \int f(x,y,z) dV$.

Then the mass of the box is M = III The Transfer of The Because the limits of integration for all three variables x, y, z are constant, the iterated integral may be written in any order.)

$$M = \int_{0}^{3} \int_{0}^{2} \left(\left(2 - z \right) \right) dz dy dx$$

$$= \int_{0}^{3} \int_{0}^{2} \left(\left(2 - z \right) \right) dz$$

$$= \int_{0}^{3} \int_{0}^{2} \left(\left(2 - z \right) \right) dz$$

$$= 2z - \frac{z^{2}}{z} \int_{0}^{1} dz$$

$$= \int_{0}^{2} \int_{0}^{2} \frac{2^{2} - \frac{2^{2}}{2}}{2} \int_{0}^{2} dy dx$$

$$= 2 - \frac{1}{2} = \frac{3}{2}$$

$$= \int_{0}^{3} \int_{0}^{2} \frac{3}{2} dy dx$$

$$= \frac{3}{2} y \Big|_{0}^{2} = 3$$

$$= \frac{3}{2} \int_{0}^{2} \frac{3}{2} dy dx$$

$$= \int_{0}^{3} \frac{3}{2} y \Big|_{0}^{2} dx$$

$$= \int_{0}^{3} 3 dx$$
Outer $\int_{0}^{3} 3 dx = 3 \times \int_{0}^{3} = 9$

$$= \int_{0}^{3} 3 dx$$
Note: Any other order of integration produces

$$= 3 \times \Big|_{0}^{3} = 9$$
the same result.

(bottom)
$$f(x,y_{0}) = 2 - 0 = 2$$
Confidence check: At the top of the box, density is $f(x,y_{3},1) = 2 - 1 = 1$.

If the box has constant density of 1, its mass would be (vol) (density)
$$= 6.1 = 6.$$

$$= 6.2 = 12$$
Actual mass is $\frac{6+12}{2} = \frac{18}{2} = 9$, as you might expect.

Ex 2: Find the volume of the prism D in the positive octant bounded by the planes
$$y=4-2x$$
 and $z=6$.

Sol: Volume is $V=\iint_D 1 \, dV$

Sketch D.

The other bounds are the coordinate planes $x=0$, $y=0$, $z=0$.

Sketch the xy-trace of $y=4-2x$: the back wall is $x=0$
 $y=4-2x$
 $y=4-2x$

We can think of the rectangle or than the base of the prism.

Base of prism: $y=0$ (the xz-plane) This means inner integral. Then the upper surface is $y=4-2x$. Will be dy

Projection of prism onto the xz plane is

 $R=\{(x,z): 0 \le x \le z, 0 \le z \le 6\}$
 $V=\iint_{x=0}^{4-2x} \frac{4-2x}{1-4x} \, dx$
 $V=\iint_{x=0}^{4-2x} \frac{4-2x}{1-4x} \, dx$

e can also do dy dz dx:

$$\int_{0}^{2} \int_{0}^{4} (4-2x) dz dx = \int_{0}^{2} (4-2x) \frac{1}{2} \int_{0}^{4} dx$$

$$= \int_{0}^{2} 24 - 12 \times dx$$
That the
Tesult is
$$= 24 \times - \frac{12 \times 2}{2} \Big|_{X=0}^{X=2}$$

$$= 24(2) - 6(4) = 24$$

$$= 24(2) - 6(4) = 24$$
Ex 3:

(MML#6)

Find the volume of the solid D bounded by paraboloids $y = x^2 + 3z^2 + 1$ and $y = 5 - 3x^2 - z^2$

$$y = x^2 + 3z^2 + 1$$

$$y = 5 - 3x^2 - z^2$$

$$y = 5 - 3x^2 - z^2$$

Find the intersection of Y=x2+322+1 & Y=5-3x2-22 then project it onto the XZ-plane: $x^{2} + 3z^{2} + 1 = 5 - 3x^{2} - z^{2}$ Set

project it onto the
$$xz$$
-plane:
Set $x^2+3z^2+1=5-3x^2-z^2$
 $4x^2+4z^2=4$
 $x^2+z^2=1$ (unit circle on the xz -plane)

$$V = \iiint dA = \iiint \int \int \int dy dA$$

$$D = R \left(x^{2} + 3z^{2} + 1 \text{ (left boundary)} \right) dA$$
where R is the disk $x^{2} + z^{2} \leq 1$

$$\frac{1}{\text{inner}} \quad y \quad | \text{right bound} \quad = \quad 5 - 3x^{2} - z^{2} - \left(x^{2} + 3z^{2} + 1 \right)$$
left bound

V=
$$\int_{R}^{\infty} 4(1-x^2-z^2) dA$$

But now "z" plays the role of "y"

$$R = \{(r,b): P \in \mathbb{R} \}$$
 $R = \{(r,b): P \in \mathbb{R} \}$

$$z''$$
 plays the role of $z\pi$

$$\int_{R} f(x,z) dA = \int_{0}^{2\pi} f(r \omega s \theta, r s \bar{n} \theta) r dr$$
R

$$f(x,z) = 4(1-x^2-z^2)$$
= 4(1-r\cos\theta-r\cos\theta-r\cos\theta)

$$0 \le r \le 1, \\
0 \le \theta \le 2\pi$$

$$= 4 (1 - r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta)$$

$$= 4 (1 - r^{2}) \text{ because } \cos^{2} \theta + \sin^{2} \theta = 1$$

$$= 4 (1 - r^{2}) \text{ because } x^{2} + x^{2} = 1$$
Alternatively,
$$f(x_{1}x) = 4 \left(1 - (x^{2} + x^{2})\right) = 4 \left(1 - r^{2}\right) \text{ because } x^{2} + x^{2} = r^{2}$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} 4 (1 - r^{2}) r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} 4 (r - r^{2}) \, dr \, d\theta = \int_{0}^{2\pi} 4 \left(\frac{r^{2}}{2} - \frac{r^{4}}{4}\right) \frac{r}{r = 0} \, d\theta = \int_{0}^{2\pi} 1 \, d\theta = 2\pi$$

Def Average value of
$$f(x_1y_1z)$$
 over a region D (in \mathbb{R}^3) is
$$\frac{1}{\text{Volume of }D}\iiint\limits_{D}f(x_1y_1z) dV$$

Students try:

EXAMPLE 5 Average temperature Consider a block of a conducting material occupying the region

$$D = \{(x, y, z) : 0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 1\}.$$

Due to heat sources on its boundaries, the temperature in the block is given by $T(x, y, z) = 250xy \sin \pi z$. Find the average temperature of the block.

SOLUTION We must integrate the temperature function over the block and divide by the volume of the block, which is 4. One way to evaluate the temperature integral is as follows:

$$\iiint_{D} 250xy \sin \pi z \, dV = 250 \int_{0}^{2} \int_{0}^{2} xy \sin \pi z \, dz \, dy \, dx \qquad \text{Convert to an iterated integral.}$$

$$= 250 \int_{0}^{2} \int_{0}^{2} xy \frac{1}{\pi} \left(-\cos \pi z \right) \Big|_{0}^{1} dy \, dx \qquad \text{Evaluate inner integral with respect to } z.$$

$$= \frac{500}{\pi} \int_{0}^{2} \int_{0}^{2} xy \, dy \, dx \qquad \text{Simplify.}$$

$$= \frac{500}{\pi} \int_{0}^{2} x \left(\frac{y^{2}}{2} \right) \Big|_{0}^{2} dx \qquad \text{Evaluate middle integral with respect to } y.$$

$$= \frac{1000}{\pi} \int_{0}^{2} x \, dx \qquad \text{Simplify.}$$

$$= \frac{1000}{\pi} \left(\frac{x^{2}}{2} \right) \Big|_{0}^{2} = \frac{2000}{\pi}. \qquad \text{Evaluate outer integral with respect to } x.$$

Dividing by the volume of the region, we find that the average temperature is $(2000/\pi)/4 = 500/\pi$