$$\begin{bmatrix}
 \begin{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \end{bmatrix}
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \\
 \end{bmatrix}
 \\
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \\
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \\
 \end{bmatrix}
 \\
 \end{bmatrix}
 \begin{bmatrix}
 \\
 \\
 \\
 \\
 \end{bmatrix}
 \\
 \\
 \\
 \\
 \\
 \\
 \end{bmatrix}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\$$

Now, consider a region R bounded on the left & right
by
$$x = g(y)$$
, $x = h(y)$, on the interval $c \le y \le 4$.
 $x = 2(y)$
 $y = -(x)$, $x = h(y)$, $y = -(y)$, y

More general: The volume of the solid between surfaces

$$g(x_{3}y)$$
 and $f(x_{1}y)$ over a vegion R on the xy-plane is
 $V = \iint_{R} (f(x_{1}y) - g(x_{3}y)) dA$ if $f(x_{3}y) \ge g(x_{3}y)$ on R .
 R
 $Ex S: Find the volume of the solid bounded by the
parabolic (glinder $Q = 1 + x^{2}$ and the planes $Q = 5 - y$ and $Q = 0$.
Sol: x_{2} -trace of
 $z = 1 + x^{2}$:
 $Q = 1 + x^{2}$:$

(cort EXS)

So the region of integration is $R = \{ (x,y) : 0 \le y \le 4 - x^2, -2 \le x \le 2 \}$ R y=0 $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ $y=4-x^2$ y=0 y=2 $y=4-x^2$ y=0 y=0 y=2 $y=4-x^2$ y=0 y=0 $y=4-x^2$ y=0 y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=0 y=2 $y=4-x^2$ y=0 y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=2 $y=4-x^2$ y=2 y=2 Volume of solid is $V = \iint (upper)_{surface} - (lower)_{surface} dA$ R + he place(3) + he parabolic cylinder (1) $= \int (5-y) - (1+x^2) dy dx$ ron-constantbound bound $A(x) = 0 \le y \le 4-x^2$

* Alternatively, we can <u>change the order of integration</u>: $y = 4 - x^{2}$ $x^{2} = 4 - y$ y = -2 $y = 4 - x^{2}$ $x^{2} = 4 - y$ $x = -\sqrt{4-y}$, $x = \sqrt{4-y}$ (left bound) (right bound) lower and upper bounds are $0 \le y \le 4$ $y = \sqrt{\sqrt{4-y}}$ $y = \sqrt{\sqrt{4-y}}$ $y = \sqrt{4$

Let's do the first option (because integrating
polynomials are easier):

$$A(x) = \int_{0}^{4-x^{2}} (5-y-1-x^{2}) dy = \int_{0}^{4-x^{2}} ((4-x^{2})-y) dy = (4-x^{2})y - \frac{y^{2}}{2} \Big|_{y=0}^{y+4-x^{2}}$$

$$= ((4-x^{2})(4-x^{2}) - \frac{(4-x^{2})^{2}}{2} - (0)$$

$$= 16 - 8x^{2} + x^{4} - \frac{1}{2}(16 - 8x^{2} + x^{4})$$

$$= \frac{1}{2} [16 - 8x^{2} + x^{4}] \frac{16 - 8x^{2} + x^{4}}{16 - 8x^{2} + x^{4}} \frac{1}{16} \frac{16x - 8x^{3}}{5} + \frac{x^{3}}{5} \int_{x=0}^{x=2}$$

$$V = \int_{-2}^{2} A(x) dx = \int_{0}^{2} 2A(x) dx = \int_{0}^{2} 16 - 8x^{2} + x^{4} dx = 16x - 8\frac{x^{3}}{5} + \frac{x^{3}}{5} \int_{x=0}^{x=2}$$

$$= 32 - \frac{64}{5} + \frac{64}{5} - \frac{256}{15}$$

$$P \text{ or } d_{0} \int_{-2}^{2} \frac{1}{2} [16 - 8x^{2} + x^{4}] dx, \text{ get the same answer.}$$

Def If R is a region in the xy-plane,
the area of R is
$$\iint dA$$

Ex: Area of
 $\begin{cases} R : y=4e^{x} \\ 0 & 1 \\ 0 & 1 \\ \end{cases}$
is $\int_{0}^{1} 4e^{x} \\ 1 & dy dx = \int_{0}^{1} (y+4e^{x}) dx$
 $= \int_{0}^{1} (4e^{x}-4) dx = 4e^{x}-4x \Big|_{x=0}^{x=1}$
 $= 4e-4-(4e^{0}-0) = 4e-4-4 = 4e-8$
Reading HW Sec 16.3 Double integrals in
polar coordinates
Review examples of polar coordinates Sec 12.2
* Example 1 and 2 Convut between polar 4 cartesian

* Example 4 Graph r= l+sind