Sec 16.2 Reading HD:
Double integrals over general (non D) regions: Read Example 1 & 2
Sec 16.1 Double integrals over rectangular regions
Idea: In calc 1, area under the curve yeffs) for all likes
is taking limit as
$$a \to o$$
 of the
sum of areas of (vertical) vectorgles.
Area is the definite integral
denoted $\int_{a}^{b} f(x) dx$
Now:
volume under the surface $z = f(x,y)$ over
the rectangle $R = [a,b] \times [c,d]$
is taking limit as $a \to o$ of the
sum of volumes of (vertical) boxes
 $k = \frac{1}{2} \int_{a}^{y} \int_{a}^{y} \int_{a}^{z} \int_{a}^{z} \int_{b}^{z} \int_{a}^{z} \int_{b}^{z} \int_{b}^{z}$

Ex 1 * 2:
Consider the solid region bounded by the plane
$$z = c - 2x - y$$

over the vectangular region $R : [(x,y): 0 \le x \le 1, 0 \le y \le 2]$
over the vectangular region $R : [(x,y): 0 \le x \le 1, 0 \le y \le 2]$
or $[0, 1] \times [0, z]$ for short
 $\frac{2}{1}$
The volume of this solid is the double integral
 $V = \iint_{R} f(x,y) dA = \iint_{R} (6 - 2x - y) dA$
How to compute V:
Keep x value constant, take a vertical slice of the solid
parallel to the yz - plane.
This slice at point x has a
cross-sectional area denoted $A(x)$.
 $A(x) = \int_{0}^{2} (6 - 2x - y) dy$
 $x = \int_{R} f(x,y) dx = f(2 - 2x - y) dy$
 $x = \int_{R} \frac{1}{2} \int_{Y=0}^{y} \frac{1}{2} \int_{Y=0}^{y=2} \frac{1}{2} \int$

$$V = \int_{0}^{1} A(x) dx = \int_{0}^{1} \left[\int_{0}^{1} (6 - 2x - y) dy \right] dx$$
$$= \int_{0}^{1} 10 - 4x dx = 10x - 4x^{2} \int_{0}^{1} = (10 - 2) - 0 = 8$$

If we first slice the solid by keeping y constant,
we would get
$$A(y) = \int_{0}^{t} (6 - 2x - y) dx$$
.
 $= 5 - y$
Volume is $V = \int_{0}^{2} A(y) dy = \int_{0}^{2} \left[\int_{0}^{t} (6 - 2x - y) dx \right] dy$
 $= \int_{0}^{2} 5 - y dy = 5 Y - \frac{y^{2}}{2} \int_{0}^{2} = 8$ (same answer)

(order of integration can be swapped)

The double integral of f over a rectangular region $k^{\pm}[a,b] \times [c,d]$ may be evaluated by either of two iterated integrals:

$$\iint_{R} f(x, y) dA = \int_{c}^{a} \int_{a}^{b} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

) ef: The average value of
$$f(x,y)$$
 over region R is
$$\frac{1}{area \ of \ R} \iint_{R} f(x,y) \ dA$$

(MML #8)

The average value of f(x,y) = cos x sin y over the region $R = [0, \frac{\pi}{3}] \times [0, \frac{\pi}{4}]$ is inner integral $\frac{1}{\text{area of } R} \iint_{R} f(x,y) dA = \underbrace{\frac{1}{\frac{\pi}{3} \cdot \frac{\pi}{4}}}_{0} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{3}} \cos x \sin y dx dy$ (Here I choose my inner $\frac{\pi^2}{12}$ outer integral integral to be wrt x) $\frac{inner}{\int} \int \cos x \sin y \, dx = \sin y \int \cos x \, dx$ $= \frac{x - \frac{x}{3}}{x - \frac{x}{3}}$ = $\sin y \left(\sin \frac{\pi}{3} - \sin \theta \right) = \frac{\sqrt{3}}{2} \sin y$ <u>outer</u> $\int_{-\frac{1}{2}}^{\frac{1}{4}} \frac{\sqrt{3}}{2} \sin y \, dy = -\frac{\sqrt{3}}{2} \cos y \Big|_{u=0}^{\frac{1}{4}}$ $= -\sqrt{\frac{3}{2}} \left(\cos \frac{\pi}{4} - \cos 0 \right)$ $=-\frac{\sqrt{3}}{2}\left(\frac{\sqrt{2}}{2}-1\right)=\frac{\sqrt{3}}{2}\left(1-\frac{\sqrt{2}}{2}\right)$ The average value is $\frac{12}{\pi^2} \frac{\sqrt{3}}{2} \left(1 - \frac{\sqrt{2}}{2}\right) = \frac{6\sqrt{3}}{\pi^2} \left(1 - \frac{\sqrt{2}}{2}\right)$