15.6 Tangent planes & linear approximations
Fart I
In Calc 1: , on
$$(x, f(x))$$
, the curve locks like the tangent line
at $(a, f(a))$
 $y = f(x)$
 $y = f(x)$
 x matter how much we zoom in,
a momentum to the lock like a line
 x matter how much we zoom in,
a momentum to the lock like a line
 x matter how much we zoom in,
 $x = f(x)$
 $y = f(x)$
 $y = f(x)$
 $y = f(x)$
 $y = f(x)$
No tangent line at $(b, g(b))$
 $y = f(x, y, z) = f(x, y) = z$, then
 $F(x, y, z) = 0$ describes the same surface.
 $Taplicit form$
 $Ex : Z = xy + x - y$ is an explicit form.
 $f(x)$
 $An implicit form is$
 (a,b,c)
 $An implicit form is$
 (a,b,c)
 (a,b,c) ,
 (b,c) ,
 (a,b,c) ,

What is a tangent plane?
• Consider a curve
$$C: \vec{r}(t) = (x(t), y(t), \vec{z}(t))$$
 that
lies on the surface $F(x,y,z) = 0$.
• Because all points on C lie on the surface $F(x,y,z) = 0$,
we have $F(x(t), y(t), \vec{z}(t)) = 0$.
• Differentiate $\forall respect to t:$
 $\frac{1}{4t} F(x(t), y(t), \vec{z}(t)) = 0$.
• Differentiate $\forall respect to t:$
 $\frac{1}{4t} F(x(t), y(t), \vec{z}(t)) = 0$.
• Differentiate $\forall respect to t:$
 $\frac{1}{4t} \frac{1}{2t} \frac{dy}{dt} + \frac{3F}{2t} \frac{dy}{dt} = 0$
 $(\frac{2F}{2T}, \frac{3F}{2T}, \frac{3F}{2t}, \frac{dy}{dt} + \frac{3F}{2t} \frac{dy}{dt} = 0$
This means: At any point on the curve C , the tangent
 $\frac{1}{\sqrt{r}(t)} \frac{1}{\sqrt{r}(t)} \frac{1$

$$\frac{\text{Def}}{\text{the } \text{tangent } \text{plane}} \quad \text{of the surface } \frac{\text{F}(x,y,z)=0}{(\text{Implicit})}$$

at Po (A,b,C) is the planc ... form)
(1) containing the point Po
(2) orthogonal to the gradient $\nabla F(a,b,c)$
So an equation of the tangent plane of the
surface $F(x,y,z)=0$ at point Po is given by
 $\nabla F(B) \cdot PoP = 0$ see Sec 13.5 (linesplanes in space)
that is, $\langle F_x(B), F_y(B), F_z(B) \rangle \cdot \langle x-a, y-b, z-C \rangle = 0$, or,
equivalently, $\overline{F_x(B)}(x-a) + F_y(F_0)(y-b) + F_z(B_0)(z-c) = 0$
Ex 1: Consider the ellipsoid $\frac{x^2}{7} + \frac{y^2}{25} + z^2 = 1$ (see sec 13.6)
a) Find the tangent plane to the surface at $(0, 4, \frac{3}{5})$.
So I: Kewrite $\frac{x^2}{7} + \frac{y^2}{25} + z^2 - 1 = 0$ our $\overline{P_x(A,b,c)}$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{25}y, \frac{22}{7} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y, \frac{22}{5} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y, \frac{22}{5} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y, \frac{22}{5} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y, \frac{22}{5} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y, \frac{22}{5} \rangle$
 $\nabla F(x,y,z) = \langle Fx, Fy, Fz \rangle = \langle \frac{2}{7}x, \frac{2}{5}y \rangle = 0$

cont 7

(conit) b) At what points
$$(a,b,c)$$
 on the surface is the
tangent plane horizontal?
Sol: A horizontal plane is of the form $Z = C$
so it has (vertical) normal vector of the form $(0,0,20)$.
This normal vector is parallel to $\nabla F(a,b,c)$.
In part (a), we computed $\nabla F(x,y,z) = \langle \frac{2}{7}X, \frac{2}{25}Y, 22 \rangle$
 $\int_{0} \frac{2}{7}X=0, \frac{2}{25}Y=0, 2Z=C$
 $S. x=0, Y=0$
 $F(0,0,c)=0 \Rightarrow \frac{0^{2}}{7} + \frac{0^{2}}{25} + C^{2} - 1 = 0 \Rightarrow C = l or -l.$
Answer: At points $(0,0,1)$ and $(0,0,-1)$,
the tangent planes are horizontal.

Fact The Langent plane of the surface
$$z = f(x, y)$$

at Po (a,b, f(a,b)) is the plane ...
(1) containing the point Po
(2) orthogonal to $\langle f_x(a,b), f_y(a,b), (-1) \rangle$
(2)

So an equation of the tangent
$$y | ane of the
surface $z = f(x,y)$ at point Po is given by
 $f_x(P_0)(x-a) + f_y(P_0)(y-b) - 1(z-c) = 0$
 $f_z(P_0)(x-a) + f_y(P_0)(y-b) + f(a,b)$
Equiv, $z = f_x(P_0)(x-a) + f_y(P_0)(y-b) + f(a,b)$$$

Part II. Linear opproximation.
Calc 1:
$$y = f(x)$$

f(a)

Ex 3: Let
$$f(x,y) = \frac{5}{x^2 + y^2} = 5(x^2 + y^2)^{-1}$$

a $b f(a,b)$
i) i)
for the linear approximation for f at $(-1,2,1)$.
Soli
 $f_x = 5(-1)(x^2 + y^2)^{-2} = 2x = \left[-\frac{10 \times (\frac{1}{(x^2 + y^2)})^2}{f_x(-1,2)} + \frac{1}{(1^2 + 2)^2} + \frac{10}{25} = \frac{2}{5}\right]$
 $f_y = \frac{-10 \times (\frac{1}{(x^2 + y^2)})^2}{f_y(-1,2)} + \frac{1}{(1^2 + 2)^2} + \frac{10}{25} = -\frac{4}{5}$
 $L(x,y) = \frac{2}{5}(x-b)(x-a) + \frac{1}{5}(y-2) + 1$
 $= \frac{2}{5} \times + \frac{2}{5} - \frac{4}{5} \times + \frac{8}{5} + 1$
 $= \frac{2}{5} \times -\frac{4}{5} \times + 3$
b) Use the linear approximation to estimate the value of $f(-1,05, 2.1)$.
(port (a))
Sol: $L(-1.05, 2.1) = \frac{1}{5}(-1.05) - \frac{4}{5}(2.1) + 3 = \frac{7}{10} = 0.70$
Note: Actual value is about 0.707 , R
the relative error $3s - \frac{0.007}{0.707} = \frac{2}{707}$, less than $0.8 \times$
Def (⁴ Approximate change formula⁶) MML # 2
The change in $Z = fG_{12}$) as (x_1y) changes to $(x + dx_1) + dy$
is denoted by ΔZ .
This change is approximated by the differential dZ .
 $\Delta Z \approx dZ = f_x(x_1y) dx + f_y(x_1y) dy$
Reading HW: Read Sec 15.7 (max/min problems) Examples $1 \le 2$