Reading HW Sec 15.6 (Tangent planes & linear approximation) Read Example 1 or 2 15.5 Directional derivatives and the gradient

Goals: You we standing on a surface.
(1) You walk in a direction not parallel to the x-axis or y-axis.
(1) You walk in a direction not parallel to the x-axis or y-axis.
What is the vare of change of in this direction?
(2) You release a ball ond let it roll.
In which direction will it roll?
(3) If you are hiking up the surface (say, it's a mountain),
in what direction should you walk after each
step if you want to follow the steepest path?
Thus / Def
Let f be differentiable at (a,b),

$$\bar{u} = \langle u_{1}, u_{2} \rangle$$
 a unit vector in the xy-plane.
The directional derivative of f at (a,b) in the direction of \bar{u}
is $D_{\bar{u}} f(a,b) = \langle f_{x}(a,b), f_{y}(a,b) \rangle \cdot \langle u_{1}, u_{2} \rangle$
 $= u_{1} f_{x}(a,b) + u_{2} f_{y}(a,b)$.
Note:
If $\bar{u} = \hat{1} = \langle 1, 0 \rangle$
 $\hat{u} = \langle u_{1}, 0 \rangle$
 $\hat{u} = \langle u_{1}, 0 \rangle$
 $\hat{u} = \langle u_{1} \rangle$
 $\hat{u} = \langle u_{1} \rangle$
 $\hat{u} = \langle u_{2} \rangle$
 $\hat{u} = u_{1} f_{x}(a,b) = f_{x}(a,b)$,
 $(\text{the partial derivative of f at in the direction of in the variable.
 $\hat{u} = u_{1} f_{x}(a,b) = (1,0)$
 $\hat{u} = (1,0)$
 $\hat{u} = \langle u_{1} \rangle$
 $\hat{u} = (1,0)$
 $\hat{u} = \hat{u}$
 $\hat{u$$

 $[f \ \vec{u} = \hat{j} = \langle 0, 1 \rangle , \ \mathcal{D}_{\langle 0, 1 \rangle} f(a, b) = f_{y}(a, b)$

wrt x)

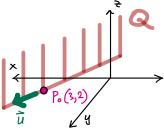
(Note: The vector (fx (9, b), fy (9, b)) that appears in the dot product for directional derivatives is called the gradient of f) Def The gradient of a differentiable function f at (X,y) is the vector-valued function $\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = f_x(x,y) \uparrow + f_y(x,y) \uparrow$ Note: We can now write $D_{\overline{u}} \neq (a,b) = \nabla f(a,b) \cdot \overline{u}$. $E \times 1$: Let $f(x,y) = \frac{x^2}{4} + \frac{y^2}{2} + 2$. The gradient of f is $\nabla f = \langle f_x, f_y \rangle = \langle \frac{2}{4}x, y \rangle$ Let Po be the point (3,2) on the xy-plane. Let $\vec{u} = \left\langle \frac{J\hat{z}}{2}, \frac{J\hat{z}}{2} \right\rangle$, a unit vector. $\mathbb{D}_{\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle} f(3, 2) = \left\langle f_{x}(3, 2), f_{y}(3, 2) \right\rangle \cdot \left\langle \frac{1}{2}, \frac{\sqrt{2}}{2} \right\rangle$ $= \left\langle \begin{array}{c} 2 \\ 4 \end{array} \middle|_{\left(3,2\right)}, \begin{array}{c} \gamma \\ \left(3,2\right) \end{array} \right\rangle \cdot \left\langle \begin{array}{c} \sqrt{2} \\ \frac{\sqrt{2}}{2} \end{array} \right\rangle \left\langle \frac{\sqrt{2}}{2} \right\rangle$ $=\left\langle \frac{2}{4}(3), 2\right\rangle \cdot \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$ $= \frac{1}{2} \left(\frac{3}{2} \right) \frac{\sqrt{2}}{2} + 2 \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{7\sqrt{2}}{4}$

mended here Week 6 Friday -

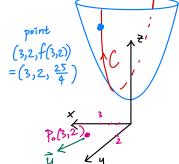
$$E \times 1: \text{ Let } f(x,y) = \frac{x^2}{4} + \frac{y^2}{2} + 2.$$
Then its graph is $2 = \frac{x^2}{4} + \frac{y^2}{2} + 2$ is the paraboloid
(Review) $2 = \frac{x^2}{4} + \frac{y^2}{2}$ shifted up by ± 2
Recall (Sec 13.6) that a horizontal trace of a surface is the set of
points of the surface which intersects a horizontal plane ($2 = 2a$).
The horizontal traces are ellipses $\frac{x^2}{4} + \frac{y^2}{2} = 2a$ or $\frac{x^2}{4b} + \frac{y^2}{22} = 1$
(Review) Sec 13.6 Ex 3)
point ($\frac{1}{42}, 0, \frac{1}{2}$) for $\frac{1}{2}$ point (0, $\sqrt{220}, \frac{2}{20}$)
So our Surface $2 = f(x,y)$ is
point ($\frac{1}{420}, 0, \frac{1}{240}$) for $\frac{1}{2}$ point (0, $\sqrt{220}, \frac{2}{20}$)
point ($\frac{1}{420}, 0, \frac{1}{240}$) for $\frac{1}{2}$ point (0, $\sqrt{220}, \frac{2}{20}$)
point ($\frac{1}{420}, 0, \frac{1}{240}$) for $\frac{1}{2}$ point (0, $\sqrt{220}, \frac{2}{20}$)
point ($\frac{1}{420}, 0, \frac{1}{240}$) for $\frac{1}{2}$ point ($0, \sqrt{220}, \frac{2}{20}$)
point ($\frac{1}{420}, 0, \frac{1}{240}$) for $\frac{1}{2}$ point ($0, \sqrt{220}, \frac{2}{20}$)

Let Po be the point (3,2) on the xy-plane. Let $\vec{u} = \left\langle \frac{J\bar{z}}{2}, \frac{J\bar{z}}{2} \right\rangle$, a unit vector $\vec{u} = \left\langle \frac{J\bar{z}}{2}, \frac{J\bar{z}}{2} \right\rangle$

Let Q be the vertical plane containing $P_0(3,2)$ and \tilde{u}



Now, think about slicing the surface with Q: Let C be the curve along which the surface intersects Q.



$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{2} + 2$$

The slope of the line tangent to C at point $(3, 2, \frac{25}{4})$ is the directional derivative of f in the direction of \hat{u} , $D_{\hat{u}} f(3,2)$. We expect this number to be positive because the curve is pointing up as we walk along the curve (in dir of ū) from point $(3, 2, \frac{25}{4})$. We compute $\hat{J}_{\overline{u}} \neq (3, 2)$ using the dot product formula: We $\left[\begin{array}{c} \sum \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle + \left(3, 2\right) = \left\langle f_{x}\left(3, 2\right), f_{y}\left(3, 2\right) \right\rangle + \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle \right]$ $= \left\langle \begin{array}{c} 2 \\ 4 \\ 4 \end{array} \middle|_{\left(3,2\right)}, \begin{array}{c} \gamma \\ \left(3,2\right) \end{array} \right\rangle \cdot \left\langle \begin{array}{c} \sqrt{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{array} \right\rangle$ computed this { earlier $= \left\langle \frac{2}{4} \begin{pmatrix} 3 \\ 2 \end{pmatrix}, 2 \right\rangle \cdot \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$ $= \frac{1}{2} \left(\frac{3}{2} \right) \frac{\sqrt{2}}{2} + \frac{2}{2} \frac{\sqrt{2}}{2} = \frac{3}{4} \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = \frac{7}{4} \frac{\sqrt{2}}{4}$

(Additional examples)

Ex 2: Find the gradient
$$\nabla f(3,2)$$

for $f(x,y) = x^2 + 2xy - y^3$,
Sol: $\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$
 $= \langle 2x + 2y + 0, 0 + 2x - 3y^2 \rangle$
 $= (2x + 2y)^2 + (2x - 3y^2)^2$
 $= (2x + 2y)^2 + (2x - 3y^2)^2$
 $= \langle 2(3) + 2(2), 2(3) - 3(2^2) \rangle$
 $= \langle 6 + 4, 6 - 12 \rangle$
 $= \langle 10_1 - 6 \rangle$
 $= (0^2 - 6^2)$

(Additional examples)

Ex 3: Let
$$f(x,y) = 3 - \frac{x^2}{10} + \frac{xy^2}{10}$$

a) Compute the gradient $\nabla f(3,-1)$:
 $fx = 0 - \frac{2x}{10} + \frac{y^2}{10}$, $fy = 0 - 0 + \frac{x}{10} 2y = \frac{xy}{5}$
 $= -\frac{12x+y^2}{10}$
 $\nabla f(3,-1) = \langle f_x(3,-1) \rangle$, $f_y(3,-1) \rangle$
 $= \langle -\frac{2(x)+1}{10}$, $\frac{3(-1)}{5} \rangle = \langle -\frac{5}{10}, -\frac{2}{5} \rangle$
b) Compute the directional derivative of f at $(3,-1)$
in the direction of the unit vector $\overline{u} \cdot \langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{12}} \rangle$:
 $P\overline{u} f(3,-1) = \nabla f(5,-1) \cdot \overline{u} = \langle -\frac{1}{2}, -\frac{3}{5} \rangle \cdot \langle \frac{1}{\sqrt{12}}, -\frac{1}{\sqrt{12}} \rangle = \frac{-5+4}{10\sqrt{2}} = \frac{1}{10\sqrt{2}}$
So the slope of the surface in the direction of $\langle \frac{1}{\sqrt{12}}, -\frac{1}{\sqrt{12}} \rangle$
is $\frac{1}{10\sqrt{2}}$
c) Compute the directional derivative of f at $(3,-1)$
in the direction of the (non-unit) vector $\overline{v} = \langle 3, 4 \rangle$:
 $P\overline{u} f(3,1) = \nabla f(3,1) + \sqrt{3^2 + 4^4} = 5$, the unit vector in the
direction of \overline{v} is $\overline{u} = \langle \frac{3}{5}, \frac{4}{5} \rangle$.
So $D_{\overline{u}} f(3,1) = \nabla f(3,-1) \cdot \overline{u} = \langle -\frac{1}{2}, -\frac{3}{5} \rangle$
So $D_{\overline{u}} f(3,1) = \nabla f(\frac{5}{5}, -1) \cdot \overline{u} = \langle -\frac{1}{2}, -\frac{3}{5} \rangle$
So the slope of the surface in the direction of $\langle 3, 4 \rangle = -\frac{37}{50}$.
So the slope of the surface in the direction of $\langle 3, 4 \rangle$
So the slope of the surface in the direction of $\langle 3, 4 \rangle$
So the slope of the surface in the direction of $\langle 3, 4 \rangle$
So the slope of the surface in the direction of $\langle 3, 4 \rangle$

For earlier
(2) You release a hall and let to ref.
(3) If you are hilling on a monotoin,
in what direction cannot direction cannot direction
he whild direction will it will?
(4) If you want to fillow the struct privi-
the gradient
Dif (a,b) =
$$\nabla f(a,b) \cdot \hat{u}$$
 equal to 1
Recall gradient
 $Pig f(a,b) = \nabla f(a,b) |\hat{u}| \cos \theta$, where θ is the angle Letween
 $\frac{1}{\nabla f(a,b)}$ and \hat{u} .
Sec.
Them
7
10) $\hat{D}_{ij} f(a,b)$ has its maximum value when $\cos \theta = 1$ (when $\theta = 0$)
11) $\hat{D}_{ij} f(a,b)$ has its maximum value when $\cos \theta = 1$ (when $\theta = 0$)
12) $\hat{D}_{ij} f(a,b)$ has its maximum value when $\cos \theta = 1$ (when $\theta = 0$)
13) $\hat{D}_{ij} f(a,b)$ has its maximum value when $\cos \theta = 1$ (when $\theta = 0$)
14) $\hat{D}_{ij} f(a,b)$ has its maximum value when $\cos \theta = 1$ (when $\theta = 0$)
15) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = 1$ (when $\theta = 0$)
15) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = 1$ (when $\theta = 0$)
16) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = 1$ (when $\theta = 0$)
16) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
17) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
18) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
19) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
20) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
21) $\hat{D}_{ij} f(a,b)$ has its minimum value when $\cos \theta = -1$ (when $\theta = \pi$).
22) $\hat{D}_{ij} f(a,b)$ and it point in opposite directions.
23) $\hat{D}_{ij} f(a,b)$ and \hat{U} are or for $\hat{D}_{ij} (\hat{D}_{ij})$.
23) $\hat{D}_{ij} f(a,b) = 0$ when $\cos \theta = 0$ (when $\theta = \frac{\pi}{2}$).
23) $\hat{D}_{ij} f(a,b)$ and it are or tho gonal.
23) $\hat{D}_{ij} f(a,b)$ and it are or tho gonal.
24) vector \hat{V} points in a direction of no change at point $\hat{V}(a,b)$.

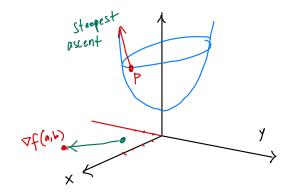
Ex 4: Consider $z = f(x,y) = 4 + x^2 + 3y^2$ a) $\nabla f = \langle 2x, 6y \rangle$

b) At point
$$P(2,-\frac{1}{2},\frac{35}{4})$$
 the gradient is $\nabla f(2,-\frac{1}{2}) = \langle 2x, 6y \rangle = \langle 4,-3 \rangle$

c) so, at point P(2,-½, 35/4), the vector <4,-3> or any positive scalar multiple of <4,-3> (like <1,-3/4> or <40,-30>) is a vector which gives the direction of steepest ascent.
The rate of charge in this direction is the magnitude of ∇f(2,-½), which is |<4,-3>|= √16+9² = 5.

d). The direction of steepest descent is given by

$$-\nabla f(2, -\frac{1}{2}) = \langle -4, 3 \rangle$$
 (or any positive scalar multiple)
. The rate of change is $-|\nabla f(z, -\frac{1}{2})| = -5$.



 $(corf) \rightarrow$