Reading HW for Sec 15.5 (Directional derivatives & the gradient) Example 1,2,3

(Notes from previous Section 15.3)

 $\frac{Thm/Def}{If fx and fy exist on an open set containing (a,b)}$ and fx and fy are continuous at (a,b), THEN f is differentiable at (a,b).

15.4 The Chain Rule

Recall Calc 1 Chain Rule:
If
$$y(u)$$
 is a function of u
 $& u(t_{t})$ is a function of t ,
then $\frac{dy}{dt} = \frac{dy}{du} \frac{du}{dt}$

New Chain Rule Thm (one independent variable t)
If
$$z = f(x, y)$$
 is a differentiable function of x and y ,
& $x(t)$ and $y(t)$ are differentiable functions of t, then:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Tree $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$ $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$ $\frac{\partial x}{\partial t} = \frac{\partial y}{\partial t}$ $\frac{\partial y}{\partial t}$ Here, Z is the <u>dependent</u> <u>variable</u> t is the <u>independent</u> <u>variable</u> X and Y are <u>intermediate</u> <u>variables</u> (• We write $\frac{dZ}{dt}$ because Z ultimately depends only on t • We write $\frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial y}$ because they are partial derivatives • We write $\frac{dX}{dt}, \frac{dY}{dt}$ because X and Y depend only on t

This theorem generalizes to functions of 3 or more intermediate variables. Ex: If w = f(x, y, z), where x, y, z are functions of a single independent variable t, then

$$\frac{qt}{qm} = \frac{9\times}{9m} \frac{qt}{qx} + \frac{9\lambda}{9m} \frac{qt}{qx} + \frac{9\lambda}{9m} \frac{qt}{qx} + \frac{9\lambda}{9m} \frac{qt}{qx}$$

Ex 1: Let
$$z = x^2 - 3y^2 + 20$$
, where $x = 2 \cos t$, $y = 2 \sin t$.
Find $\frac{dz}{dt}$ and evaluate it at $t = \frac{\pi}{4}$.
S.1: $\frac{dz}{dt} = \frac{3z}{3x}$ $\frac{dx}{dt} + \frac{3z}{3y}$ $\frac{dy}{dt}$
 $= 3x (-2 \sin t) - 6y (2 \cos t)$
 $= 1(2 \cosh t)(-2 \sin t) - 6(2 \sin t)(2 \cosh t)$
 $= -8 \cot t \sin t - 24 \sin t \cos t$
 $= -32 \cot t \sin t$
 $\frac{dz}{dt}\Big|_{t=\frac{\pi}{4}}$
Wint is the meaning of $\frac{dz}{dt}$ at $t = \frac{\pi}{4}$?
The parametric equations
 $x = 2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le t \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$
 $2 \cot t$ y = 2 sint for $0 \le 2\pi$

Then Cham Rule (Two independent variables)
Let Z be a differentiable function of x and y,
where x ky are differentiable functions of s and t.
Then

$$\frac{\partial Z}{\partial S} = \frac{\partial Z}{\partial X} + \frac{\partial Z}{\partial S} + \frac{\partial Z}{\partial Y} + \frac{\partial Z}{\partial Y} = \frac{\partial Z}{\partial X} + \frac{\partial Z}{\partial Y} + \frac{\partial$$

Ex 2: Let $z = \sin(2x) \cos(3y)$, where x = s+t and y = s-t. $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}$ $\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}$ $\frac{\partial y}{\partial s}$

(Additional Ex) Ex 3: W is a function of $x_1y_1z_1^2$ $x_1y_1z_2$ are functions of s and t $\int_{S} \frac{\partial W}{\partial t} = \frac{\partial W}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial W}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial W}{\partial z} \frac{\partial z}{\partial t}$

(Additional Ex)

$$E \times S (Implicit Differentiation):$$

$$sin(xy) + \pi y^{2} = x \quad Find \quad dy$$

$$dx$$

$$So :: \quad Sin(xy) + \pi y^{2} - x = 0$$

$$(st \quad F(x,y):= \int Sin(xy) + \pi y^{2} - x$$

$$So \quad the \text{ original } g$$

$$(st \quad F(x,y):= \int Sin(xy) + \pi y^{2} - x$$

$$To \quad find \quad \frac{dy}{dx}, \quad Think \quad of \quad y \quad ns \quad a \quad function \quad of \quad x:$$

$$F(x, y(x)) = 0$$

$$differentiate \quad both \quad sides \quad with respect \quad to \quad x \quad Think \quad of \quad x$$

$$differentiate \quad both \quad sides \quad with respect \quad to \quad x \quad Think \quad of \quad x$$

$$from \quad the \quad 1st \quad (bain \quad Kale \quad Think) \quad of \quad x \quad x \quad x \quad x \quad y \quad y \quad dy = 0$$

$$(x \quad cos(xy) - 1)1 + (x \quad cos(xy) + 2\pi y) \quad \frac{dy}{dx} = 0$$

$$(x \quad cos(xy) + 2\pi y) \quad \frac{dy}{dx} = -y \quad cos(xy) + 1$$

$$\frac{dy}{dx} = \frac{-y \quad cos(xy) + 1}{x \quad cos(xy) + 2\pi y}$$