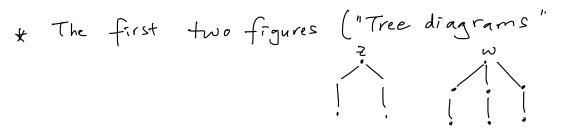
* Example 1

Ж



15.3 Partial derivatives curve Z = f(x, b) stays the same ____ (a, b, f (a, b)) "slope of the curve" z = f(x,b) is $f_x(a,b)$, the partial derivative of f with respect to x at point (a, b). Other notation: $\frac{\partial f}{\partial x}(a, b)$ or $\frac{\partial f}{\partial x}_{(a, b)}$ z = f(a,y)X-value stays the $(a, b, f(a, b)) \times$ Same "slope of the curve" z = f(x, b) is $f_y(a, b)$, the partial derivative of f with respect to y

the partial attribution (a, b). at point (a, b). other notation: $\frac{\partial}{\partial y}(a, b)$ or $\frac{\partial f}{\partial y}(a, b)$

To compute
$$\frac{\partial f}{\partial x}$$
, treat y like a constant
 $\frac{\partial f}{\partial y}$, " x like a constant

$$E_{X}: \frac{\partial}{\partial x} (5X^{2}y) = 5Y \frac{\partial}{\partial x} X^{2} = 5Y \frac{\partial}{\partial x} = 10 \times y$$

$$freat y as a constant$$

$$\frac{\partial}{\partial y} (5X^{2}y) = 5X^{2} \frac{\partial}{\partial y} y = 5X^{2}$$

$$\frac{\partial}{\partial y} freat x as constant = 1$$

$$\frac{\partial}{\partial x} f^{4} = 0$$

Ex 2:
•
$$f(x,y) = x^3 - y^2 + 4$$
 both constants
wre y
• $\frac{2}{3y} = -2y$

•
$$f_{y(2,-4)} = \frac{\partial}{\partial y} \Big|_{(2,-4)} = (-2y) \Big|_{(2,-4)} = -2(-4) = 8$$

Ex 3:
$$-f(x,y) = \sin(xy)$$

from start wrt x
 $\frac{\partial f}{\partial x} = y \cos(xy)$

Second-order partial derivatives			
Notation 1: $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$	Notation 2: (fx) _x = f _{xx}	Say: "d squared f dx squared"	or say: fxx"
$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\lambda^2 f}{\partial y^2}$	$(f_y)_y = f_{yy}$	"d squared f dy squared"	or "f-y-y"
$\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) = \frac{\partial^2 f}{\partial x \partial y}$	(fy) x = fyx	Say "	f- y- × "
$\frac{\partial^{2} \lambda}{\partial t} \left(\frac{\partial \chi}{\partial t} \right) = \frac{\partial^{2} \lambda}{\partial z} t$	(fx)y=fxy	Say "-	f-x-y "
(The order matters in the mixed partial derivatives fxy, fyx)			
$E \times 4$: $f(x,y) = 3x^4y - 2xy + 5xy^3$			
(First) partial derivatives $ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$			
$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 12 x^3 - 2 + 15 y^2$ Notice that "the two mixed partial derivatives" $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 12 x^3 - 2 + 15 y^2$ Notice that "the two mixed partial derivatives" $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x \partial y} = 12 x^3 - 2 + 15 y^2$			

a) Determine the rate of change of the pressure
with respect to the volume at a constant
temperature. Interpret the result.
Sol: Express the pressure as a function of
volume and temperature:

$$P(v, \tau) = \frac{k T}{v}$$

 $\frac{\partial P}{\partial v} = kT \frac{\partial}{\partial v} (v^{-1}) = kT (-v^{-2}) = -\frac{kT}{v^2}$
Interpretation: Since k, V, T are positive,
we see that $\frac{\partial P}{\partial v} < 0$. This means the pressure
is a decreasing function of volume (at a constant temp)
(more volume, less pressure)

•

b) Rote of change of the pressure with respect to
the temperature at constant volume? Interpretation?
Sol:
$$\frac{\partial P}{\partial T} = \frac{k}{V}$$

Interpretation: $\frac{\partial P}{\partial T} > 0$. This means the pressure
is an increasing function of temperature (at constant
volume).
(higher temperature, more pressure).

C) Draw several level curves, & interpret the results.
The level curves of the function
$$P(v_{sT}) = k T$$

are curves in the VT-plane with equations
 $k T = P_{0}$ where P_{0} is constant in the range/image of $P(v_{T})$,
meaning P_{0} is in $(0, \infty)$ (always positive)
We can draw the VT-plane as T or T
Rewrite the level curve equips other T is on one side:
 $T = \frac{1}{k}P_{0}V$
We get lines wy slope $\frac{1}{k}P_{0}$ (always positive) for V in $(0, \infty)$:
T $P_{1}^{10}P_{10}P_{10}$
We the fact that $\frac{\partial P}{\partial V} < D$ means that, if we hold
T fixed and move in the direction of increasing V
on a horizontal line, we cross level curves corresp.
to decreasing pressures.
T $P_{10}^{10}P_{10}P_{10}$
 V A function of increasing V
 $T = \frac{1}{k}P_{0}P_{10}$
 V P_{10} $P_$

(Additional notes)

(Notes for next class)

 $\frac{Thm/Def}{If f_{x} and f_{y} exist on an open set containing (a, b)}$ $and f_{x} and f_{y} are continuous at (a, b),$ THEN f is differentiable at (a, b).