15.2 Limits & continuity (for functions of two variables)
(We revisit Cole I concepts, starting from limits & continuity)
(We revisit Cole I concepts, starting from limits & continuity)
Def A function
$$f(x_{iy})$$
 has a limit L as $P(x_{iy}) \rightarrow P(a,b)$
if $|f(x_{iy}) - L|$ can be made arbitrarily small disk centered at $R(a,b)$.
for all points P in a sufficiently small disk centered at $R(a,b)$.
I.e. if, given any small positive number \in , we can find S
such that:
P being in the dist (P(ab))
(meaning the distance between P and To is less than S)
implies $|f(x,y) - L| < \epsilon$.
Warning: In Cale I, this 1-dimensional "disk" is
 $(-S+a, a+S)$ the interval $a-S = a a+S$, so we only needed to
check whether $\lim_{x \to a} f(a)$ and $\lim_{x \to a} f(a)$ exist and are equal.
 $x \to a^{-1}$ for the left e from the right)
Now, in Cale II, (E, P_{0}) is in R^{2} , so the limit exists only if
 $f(x,y)$ approaches L as P approaches P along all possible paths (!!)
Here's a cartoon:
(Here, I statched just four (out of infinitely
many) paths $P \to P_{0}$

* In order for the (imit of f to exist at Po(a,b), we need f(x,y) -> L as P -> Po for every path. * If there are two paths $P \rightarrow P_0$ that produces different limits, the limit $\lim_{(x,y) \to P_0} f(x,y) \to P_0$

$$\frac{Thm}{(\text{ limits for constant & linear functions})}$$
1. Constant function $f(x,y) = C$:

$$\lim_{(x,y)\to(a,b)} f(x,y) = C \qquad 1. \quad E_X: \quad \lim_{(x,y)\to(1,2)} 3 = 3$$

2. Linear function
$$f(x,y) = x : 2$$
, $\xi_x : \lim_{x \to 4} x = 4$
 $\lim_{(x,y) \to (a,b)} f(x,y) = a$ $(x,y) \to (4,5)$

3. Linear function
$$f(x,y) = y$$
:
lim $f(x,y) = b$
 $(x,y) \rightarrow (a,b)$
3. ξ_x : lim $y = 5$
 $(x,y) \rightarrow (4,5)$

Note:

The (Limit laws)
$$(--)^{-M}$$
 are real numbers,
Suppose $\lim_{(x_1y_1)\to(a,b)} f(x_1y_2) = L$, $\lim_{(x_1y_2)\to(a,b)} g(x_1y_2) = M$, and
 c_1d are real numbers.
(i) $\lim_{(x_1y_1)\to(a,b)} \left[C f(x_1y_1) + d g(x_1y_2) \right]^2 = C L + d M$ (linear
 $(x_1y_1)\to(a,b) = (-f(x_1y_1) + d g(x_1y_2))^2 = C L + d M$ (linear
 $(x_1y_1)\to(a,b) = (-f(x_1y_1) + d g(x_1y_2))^2 = C L + d M$ (linear
 $(x_1y_1)\to(a,b) = (-f(x_1y_1) + d g(x_1y_2))^2 = C L + d M$ (linear
 $(x_1y_1)\to(a,b) = f(x_1y_1) = L M$ (product)
 $(x_1y_1)\to(a,b) = \frac{f(x_1y_2)}{g(x_1y_2)} = \frac{L}{M}$ if $M \neq 0$ (quotient)
 $(x_1y_1)\to(a,b) = \frac{f(x_1y_2)}{g(x_1y_2)} = \frac{L}{M}$ if $M \neq 0$ (quotient)
 $(x_1y_1)\to(a,b) = \frac{f(x_1y_2)}{g(x_1y_2)} = \frac{L}{M}$ if $(x_1y_1)\to(a,b) = L^{\frac{1}{m}}$
 $(x_1y_1)\to(a,b) = \frac{L}{(x_1y_1)\to(a,b)}$ ($(-f(x_1y_1))^{\frac{1}{m}} = L^{\frac{1}{m}}$
 $E_X 1: E_{Valuate} \lim_{(x_1y_1)\to(a,b)} (3x^2y + \sqrt{xy^2})$
 $Sol: \lim_{(x_1y_1)\to(a,b)} x = (2), \lim_{(x_1y_1)\to(a,b)} (3x^2y + \sqrt{xy^2})$
 $\lim_{(x_1y_1)\to(a,b)} 5x^2y = 3(2^2y) = 9k$
 $\lim_{(x_1y_1)\to(a,b)} \sqrt{x_1y} = \sqrt{2\cdot 8} = \sqrt{k} = 4$
 $\lim_{(x_1y_1)\to(a,b)} (3x^2y + \sqrt{xy}) = 100$
 $\lim_{(x_1y_1)\to(a,b)} (3x^2y + \sqrt{xy}) = 100$

•

$$\frac{D}{2} + \int Let R be a region in R^{2}$$
Exi
Exi
This point Q(5,0)
is o boundary
P(6,4,17) is an interior point
(S,0) point of R
although not in R
(Gpon)
Here R is the disk $x^{2}+y^{2} < 5^{2}$
R
1. A point P of R is an interior point if it's possible
to find a disk centered at P that's contained in R
2. A point Q of R is a boundary point if Q lies "on the edge" of R
in the sense that every disk centered at Q contains
a point in R and a point outside of R.
Note: A boundary point of a region R needs not lie in R.
Note: A boundary points of the disk $x^{2}+y^{2} < 25$
Ite on the circle $x^{2}+y^{2} = 25$.
The interior points of the disk.
3. A region is open if it consists entirely of interior points.
4. $-n - Closed$ if it contains all its boundary points
 $4. -n - Closed$ if it contains all its boundary points
 $4. -n - Closed$ if it contains all its boundary points
 $4. -n - Closed$ if it contains all its boundary points
 $4. -n - Closed$ if it contains all its boundary points
 $4. -n - Closed$ if its closed. The symme $[(xy):|x| \leq 1]$
The disk $x^{2}+y^{2} \leq 25$ is closed. The symme $[(xy):|x| \leq 1]$
 $-1 = Closed$ if its nother closed wor ispen.

Note: Will later generalize this concept to 3D regions: balls, boxes, pyramids.

Ex (pg 933): Let
$$f(x,y) = \frac{x^2 - y^2}{x - y}$$

It's domain is $[(x,y): x \neq y]$.
When $x \neq y$, we can concel the factor $(x - y)$
from the numerator & denominator:
 $f(x,y) = \frac{x^2 - y^2}{x - y} = \frac{(x - y)(x + y)}{x - y} = x + y$
Then the graph of $f(x,y)$ is $z = x + y$
 $0 = x + y - z$
(plane W/ a normal vector $(1, 1, -1)$ passing through $(0, q, 0)$)
RUT with the points corresponding the x - y removed.
Consider $P_0(4, 4)$. This is a boundary point of the
domain of f but doesn't lie in the domain (because
domain of f but doesn't lie in the domain (because
 $(x,y) \rightarrow (4, 4)$)
For $\lim_{x \to y^2} \frac{x^2 - y^2}{x - y}$ to exist;
 $(x,y) \rightarrow (4, 4)$
that is, every path to $P_0(4, 4)$ that lie in the domain of f .
that is, every path to $P_0(4, 9)$ that dorft intersect
the line $y = x$.
 $\lim_{x \to y^2} \frac{(x + y)(x - y)^2}{x - y} \lim_{x \to y^2} \lim_{x \to y^2} \lim_{x \to y^2} (x, y) \rightarrow (4, 9)$

= 4+4 = 8

Ex 3:
Investigate
$$f(x,y) = \frac{(x+y)^2}{x^2+y^2}$$
 as $(x_{iy}) \rightarrow (o_{i}o)$.
Ans:
Domain of f is $[(x_{iy}): (x_{iy}) \neq (o_{i}o)] = \frac{R^2 - \{(o_{i}o)\}}{entire xy-plane minus one point, the origin.}$
Note: $(o_{i}o)$ is a bdry pt outside the domain.
* First, let (x_{iy}) approach $(o_{i}o)$ a long the line $y = 3 \times i$

$$\lim_{\{x,y\}\to(0,0)} \frac{(x+y)^2}{x^2+y^2} = \lim_{x\to0} \frac{(4x)^2}{(x+y)^2} = \lim_{x\to0} \frac{4^2x^2}{10x^2} = \lim_{x\to0} \frac{4^2}{10} = \frac{4^2}{10}$$
along $y=3x$

$$\lim_{x\to0} y=3x$$

* Next, let (x,y) approach (0,0) along the line y=0: $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{(x^2+y^2)} = \lim_{x\to 0} \frac{x^2}{x^2} = 1$ along y=0 y=0 y=0

* Conclusion: Because f(x,y) has different limits $\left(\frac{16}{10} \text{ and } 1\right)$ along two different paths in the domain of fas (x,y) approaches (0,0), $\lim_{x \to \infty} f(x,y)$ DOES NOT EXIST. $(x,y) \rightarrow (60)$

Def f(xiy) is continuous at point (a, b) if 1. Fis defined at (a,L) 2. lim f(x,y) exists (x,y) + G,b) 3. $\lim_{(X,y) \to (a,b)} f(x,y) = f(a,b)$. Composition of continuous functions 1 Thri Continuous.

Ex: $\ln (u) \text{ TS Continuous for } u \text{ Tn } (0, \infty)$ $\lim_{x \to \infty} \frac{1}{\sqrt{xy}} \text{ TS Continuous for } (x,y) \text{ St } x>0, y>0.$ $\lim_{x \to \infty} \frac{1}{\sqrt{xy}} \text{ TS Continuous}$ $\lim_{x \to \infty} \ln \left(\frac{3}{\sqrt{xy}}\right) = \ln \left(\frac{3\sqrt{e^78}}{e^78}\right) = \ln \left(2e^3\right)$ $= \ln(2) + \ln(e^3)$ $= \ln 2 + 3$