15.1 Graphs & level curves

. The domain of h is

 $\left[(x_{1y}): \underbrace{-6+x^2+y^2 \geq 6}_{X^2+y^2 \geq 6}\right]$

Dif: A function f of 2 variables can be written in the
"explicit form"
$$z = f(x, y)$$
.
The domain D of f is the set of all possible inputs (x, y) in \mathbb{R}^2
Pack of $x \neq y$ is a number
The image (or range) of f is the set of all possible outputs z in \mathbb{R} .

Ex: The domain D of the function
$$g(x,y) = \sqrt{4 - x^2 - y^2}$$
 is
the set of ordered pairs (x,y) for which
 $4 - x^2 - y^2 \ge 0$ (because of the square root $\sqrt{-}$)
 $\Leftrightarrow 4 \ge x^2 + y^2$
So $D = \{(x,y): x^2 + y^2 \le 4\}$ the closed disk wy radius 2
The domain of $f(x,y) = \sin xy$ is \mathbb{R}^2
 $\{(x,y): x \text{ is any number}\}$
because $\sin t$ is defined for any number t
Additional Ex:
 $(MML \#5)$

 $\frac{\|\mathbf{R}^2 - \mathbf{m} \|_{\mathbf{X}}}{disk} + \frac{disk}{x^2 + y^2} < 6$

The range / image of h is
 {-6+x²+y²:-6+x²+y²≥0}={ numbers bigger or equal to 0}=[0,∞)

Def: The graph of
$$f(x_{1}y)$$
 is the set of points $(x_{1}y_{1}z)$ in \mathbb{R}^{3}
that satisfy the equation $z = f(x_{1}y)$, i.e.
for each point $(x_{1}y)$ in the domain of for
the point $(x_{1}y, f(x_{1}y))$ lies on the graph of f.
. A graph is the graph of a function of 2 variables
if and only if it passes the "vertical line tes".
An ellipsoid $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$
fails the vertical line test, so
it's not the graph of a function

Ex:
$$g(x,y) = x^2 + y^2$$

Domain of g is \mathbb{R}^2
Range of g is $[0,\infty)$ because $x^2 + y^2 \ge 0$
Graph of g is the graph for the eg $z = x^2 + y^2$
This is an elliptic paraboloid that opens upward.
Wy vertex $(0,0,0)$

Ex a) Find the domain K range (image) of
the function
$$f(x,y) = 2x + 3y - 12$$

b) then identify / sketch the graph.
Sol:
The domain of f is R²
a) The vange / image of R
b) Sketch $2 = 2x + 3y - 12$:
 $12 = 2x + 3y - 2$
This is of the form $a(x-x_0) + b(y-y_0) + C(2-z_0) = 0$, so this surface
is a plane with normal vector $2i + 3j^{-}k$ (see Sec 13.5)
ended here week 4 Friday
Find the x-intercepts:
Set the other variables to 0:
 $y = 2 = 0 \Rightarrow \frac{12 = 2x}{6 = x}$
 $(6,0,0)$
Find the y-intercepts:
Set x=y=0: $12 = 3y$
 $4 = y$
 $(0, 4, 0)$
Find the Z-intercepts:
Set x=y=0: $12e - 2$
 $-12e = 2$
 $(0, 0, -12)$

Idea of a contour curve: Consider a surface z = f(x, y)which is a smooth mountain path where z = 6walk along this path where z = 5

Walk along a path on which your elevation has the constant value z=5. This is an example of a contour curve.

- <u>Def</u> A <u>contour curve</u> is the intersection of a surface and the horizontal plane $z = z_0$. The equations are: z = f(x,y) AND $z = z_0$. (Note: a contour curve lives in \mathbb{R}^3)
 - A <u>level curve</u> is the projection of a contour curve onto the xy-plane. The equation is: $f(x,y) = z_0$. Ex: f(x,y) = 5. (Note: a level curve lives in \mathbb{R}^2 , on the xy-plane)

In general, closely spaced curves means rapid changes in elevation widely spaced curves means slow changes in elevation.

```
Application: topographic map
```

Ex 3 (a): Find & sketch several level curves of
$$f(x,y) = y - x^{2} - 1$$
.
Label at least two level curves up their 2-values.
Sol: Image/range of f is R
The level curves (by def) are described by equations
 $y - x^{2} - 1 = 20$ where 20 is a constant in the image/range of f
 $y = x^{2} + 1 + 20$
 $y = x^{2} + 1 + 20$
 P These are parabolas in the xy-plane
Write several level curves:
 $\frac{20}{9}$ level curve
 $\frac{1}{9} = x^{2} + 1$
 1 $y = x^{2}$
 1 $y = x^{2}$

Note: with desmos. com/3d, we can graph $z = y - x^2 - 1$:

These parabolas in R³ are the intersection of the surface & the horizontal planes Z=Zo. They are the Contour curves of f(x,y)= y-x²-1.

tx 4: Find & sketch several level curves of $f(x,y)=2+\sin(x-y)$.

Sol: Image of f? 16253 Possible values of sin (X-Y) are [-1, 1], so possible values of 2+sin(X-Y) are [-1+2, 1+2] = [1,3]

The level (urves (by def) are described by equations

$$(\leq 2. \leq 3.$$

$$2 + \sin(x-y) = z_0$$
 where $1 \le z_0 \le s$.
when $z_0 = 2$, the level curve is $2 + \sin(x-y) = 2$
 $\sin(x-y) = 0$
 $x-y = ..., -\pi_1 0, \pi_1 2\pi_1 3\pi_1 ...$

So, When Zo= 2, the level curve is an infinite collection of

lines
$$y = x + \pi$$

 $y = x$
 $y = x - \pi$
 $y = x - \pi$
 $y = x - \pi$
 $y = x - k\pi$ where k is an integer
 $y = x - k\pi$ where k is an integer
 $x + \pi$
 $x + \pi$
 $x + \pi$
 $x - \pi$
 $x - \pi$
 $x - \pi$

when $z_0 = 1$ (the minimum value for z), the level curve satisfies $\sin(x-y) = -1$ $x-y = -\frac{\pi}{2} + 2k\pi$ where k is any integer (Again, we have an infinite collection of lines w slope 1)

(Extra example)
Ex 3(b) Find k sketch the level curves
$$f$$

 $f(x_1y_1) = e^{-x^2 - y^2}$
Sol: Range of f is $[e^{-t} : t \ge 0]$ because $x^2 + y^2 \ge 0$
so the range of f is $(0,1]$
The level curves satisfy the equation $e^{x^2 - y^2} \ge 0$ where $0 \le 2 \le 1$.
The level curves satisfy the equation $e^{x^2 - y^2} \ge 0$ where $0 \le 2 \le 1$.
Take natural logarithm of both sides: $-x^2 - y^2 = 4n = 20$.
Take natural logarithm of both sides: $-x^2 - y^2 = 4n = 20$.
Take natural logarithm of both sides: $-x^2 - y^2 = 4n = 20$.
Take natural logarithm of both sides: $-x^2 - y^2 = -4n = 20$.
Take natural logarithm of both sides: $-x^2 + y^2 = -4n = 20$.
The trive bacavie
(except when $2 = 1$) in this case the level curve is the point $(0,0)$).
When $2 = 1$, the level curve satisfies $x^2 + y^2 = -4n(1) = 0$.
The only solution to this equation is $(0,0)$.
When $2 = \frac{1}{2}$, the level curve satisfies $x^2 + y^2 = -4n(2) = 0$.
The only solution to this equation is $(0,0)$.
These two level curves:
The surface
 $2 = \frac{1}{2}x^2 - y^2$
 $3 = \frac{1}{2}x^2 - \frac{1}{2}x^2$