No school this Monday

14. 5 Curvature & normal vectors

Part I Curvature is the rate at which the car changes direction.

$$\begin{aligned} & \text{Recall } \vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\vec{V}(t)}{|\vec{v}(t)|} & \text{is the unit targent vector} \\ & |\vec{r}'(t)| = \frac{\vec{V}(t)}{|\vec{v}(t)|} & \text{(from sec 14.2)} \end{aligned}$$

$$\begin{aligned} & \text{length of \vec{T} is always 1, so the only way \vec{T} can \\ & \text{change is through a change in direction.} \end{aligned}$$

The direction of
$$\overline{T}$$
: say
the curve has a large curvature

Def The curvature of a smooth curve
$$F(t)$$

meaning $\overline{V}(t)$ is never the zero vector
is $\mathcal{M}(5) = \left| \frac{d\overline{T}}{ds} \right|$, where s is arc length
kappe
Note:
i) Curvature depends only on the shape of the
curve, not the orientation.
 $\mathcal{M}(s)$ is a nonnegative Scalar - valued function
(meaning its output is always a nonnegative number)
 $\mathcal{M}(s)$ is a nonnegative Scalar - valued function
(meaning its output is always a nonnegative number)
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{T}(t)| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{t}| \left| |\overline{t}| \right| \right|$
 $\mathcal{M}(s) = \frac{1}{|\overline{t}|} \left| \frac{d\overline{T}}{dt} \right| = \frac{1}{|\overline{t}|} \left| |\overline{t}| \left| |\overline{t}| \right| \right|$

the second second second second

Recall the line passing through point
$$P_0(X_0, Y_0, z_0)$$

and parallel to the vector $\langle a_3, b_3, c \rangle$
can be described by
 $\vec{r}(t) = \langle X_0 + at_3, Y_0 + bt_3, z_0 + ct_2 \rangle$ for $-\infty \langle t \rangle \langle \infty \rangle$.
(See Sec 14.1 Example 1)
Then $K(t)$ intriviely should be 0 because the unit
tangent vector should always be parallel to $\langle q_3, b_3 c \rangle$
 $\langle X_0, Y_0, t_0 \rangle$

Let's verify that our intuition is correct:

$$\overline{T}(t) = \frac{\overline{r}'(t)}{|\overline{r}'(t)|} = \frac{\langle a, b, c \rangle}{|\overline{a}^2 + b^2 + c^2}$$
which is a constant
vector (every component
is a number)
is a number)
so $\frac{d\overline{T}}{dt}(t) = \overline{D}$ the zero vector for all t
so $\chi(t) = \frac{1}{|\overline{v}|} \left[\frac{d\overline{T}}{dt} \right] = \frac{1}{|\overline{v}|} |\overline{D}| = 0$ for all t

Punch line: the curvature of a straight line is zero always

There is another formula for computing curvature, using cross product:

• Let
$$\vec{a}$$
 be the acceleration of the object wy
position $\vec{r}(t)$. Then $\vec{a} = \frac{d\vec{v}}{dt}$
 $\mathcal{K}(t) = \frac{|\vec{v}(t) \times \vec{a}(t)|}{|\vec{v}(t)|^3}$

Ex 3 Find the curvature of the parabola $\vec{r}(t) = \langle t, t^2 \rangle, \quad -\infty < t < \infty.$ Sol: $\vec{V}(t) = \vec{r}^{1}(t) = \langle 1, 2t \rangle$ $|\vec{V}|^{3} = (1^{2} + (2t)^{2})^{\frac{3}{2}} = (1 + 4t^{2})^{\frac{3}{2}}$ $\vec{a}(t) = \vec{\nabla}^{1}(t) = \langle 0, 2 \rangle$ $\vec{V}(t) \times \vec{a}(t) = \begin{vmatrix} 1 & j & \hat{k} \\ 1 & 2t & 0 \\ 0 & 2 & 0 \end{vmatrix} = 0 \ \vec{1} - 0 \ \vec{j} + (2-0) \ \vec{k} = \langle 0, 0, 2 \rangle$ $|\vec{V}(t) \times \vec{a}(t)| = \sqrt{2^{2}} = 2$ $\langle_{0} \quad \vec{K}(t) = \frac{2}{(1+4t^{2})^{\frac{3}{2}}}$

Remark: Curvature is biggest when the denominator is small (t=0). As $t \rightarrow \infty$ and $t \rightarrow -\infty$, curvature approach 0.

Def The principal unit normal vector at point P on the curve (at which $K(t) \neq 0$) is the vector Curvature $\vec{N}(t) = \frac{\left(\frac{d\vec{T}}{dt}\right)}{\left|\frac{d\vec{T}}{dt}\right|}$ evaluated at the value of t corresponding to P. Ex 5 (Helix) Let $\vec{r}(t) = \langle 3 \cos t, 3 \sin t, 4t \rangle$, for $-\infty < t < \infty$. v(t)= r'(t)= <-3sint, 3cost, 4> $|v(t)| = \sqrt{3^2 \sin^2 t + 3^2 \cos^2 t + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ $S_{0} = \frac{\overline{V}(t)}{|\overline{V}(t)|} = \frac{\langle -3\sin t, 3\cos t, 4 \rangle}{5}$ $\frac{d\bar{\tau}}{dt} = \left\langle -\frac{3}{5} \cos t, -\frac{3}{5} \sin t, 0 \right\rangle$ $\left|\frac{d\tau}{dt}\right| = \sqrt{\left(-\frac{3}{5}\cos t\right)^2 + \left(-\frac{3}{5}\sin t\right)^2 + 0} = \sqrt{\left(\frac{3}{5}\right)^2} = \frac{3}{5}$

So
$$\vec{N}(t) = \frac{(d\vec{T})}{|d\vec{T}|} = \langle -\cos t, -\sin t, o \rangle$$

Remark: If we changed 3 and 4 to other numbers, N is the same, always parallel to to the xy-plane & points inward toward the z-axis.