Reading HW for next class: Sec 14.4 : Read the defof arc length for a vector function

Read Example 2, Example 3

l

4

$$\vec{r}(t)$$
 is smooth on an interval if it's differentiable
and $\vec{r}'(t) \neq \vec{0}$ on that interval.
***** If $\vec{r}(t)$ is smooth, then the unit tangent vector
(for a particular value of t) is
 $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$ "divide by its magnitude"
Ex 2(a) $\vec{r}(t) = \langle t^2, 4t, 4 \ln t \rangle$ for $t > 0$
($t \text{ in } (y, \infty)$)
(i) Derivative of $\vec{r}(t)$ is
 $\vec{r}'(t) = \langle 2t, 4, \frac{4}{t} \rangle$
(ii) Unit tangent vector ?
Magnitude of $\vec{r}'(t)$ is $|\vec{r}'(t)| = \sqrt{(2t)^2 + 4^2 + (\frac{4}{t})^2}$
 $= \sqrt{4(t^2 + 16 + \frac{16}{t^2})} = \sqrt{4(t^2 + 4 + \frac{4}{t^2})} = \sqrt{4(t^2 + 2t^2 + (\frac{4}{t})^2)^2}$
 $= \sqrt{4(t + \frac{2}{t})^2} = 2(t + \frac{2}{t}) = 2t + \frac{4}{t}$
So , $\vec{T}(t) = \frac{1}{2t + (\frac{4}{t})} < 2t, 4, \frac{4}{t} \rangle$

Ex 2(b):
$$\vec{r}(t) = 10$$
 1 + 3 cost j + 3 sint \hat{r} for $0 \le t \le 2\pi$
(i) $\vec{r}'(t) = \langle 0, -3 \sin t, 3 \cos t \rangle$
(ii) $\vec{r}'(t) = \sqrt{0, -3 \sin t, 3 \cos t} > \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = \langle 0, -3 \sin t, 3 \cos t \rangle = 1$
(ii) $\vec{r}'(t) = \sqrt{0^2 + 3^2} \sin^2 t + 3^2 \cos^2 t$
 $= \int 0 + 3^2$
because $\sin^2 \theta + \cos^2 \theta = 1$
 $= \langle 3 \rangle$
Def Let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ be a vector function

An <u>antiderivative</u> of $\vec{r}(t)$ is a vector function $\vec{R}(t)$ s.t $\vec{R}'(t) = \vec{r}(t)$, that is, $\vec{R}(t) = \langle \vec{F}(t), G(t), H(t) \rangle$ s.t \vec{F} is an antiderivative of f, $\vec{G} = (\vec{r} - \vec{r} - \vec{r}) - \vec{r} - \vec{r}$, $\vec{H} = (\vec{r} - \vec{r}) - \vec{r} - \vec{r}$,

The indefinite integral of
$$\vec{r}$$
, denoted $\int \vec{r} (t) dt$, is the collection of all antiderivatives of \vec{r} .

Def The definite integral of
$$\overline{\tau}(t) = \langle f(t), g(t), h(t) \rangle$$

on the interval $[a,b]$ (if each of fight is integrable on $[a,b]$)
is $\int_{a}^{b} \overline{\tau}(t) dt = \langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \rangle$
MML 13: Evaluate $\int_{0}^{2} t e^{t} (47 + 5\hat{j} + 6\hat{k}) dt$
Int by Parts: $\int u dv + \int v du = uv$
 $\Rightarrow \int u dv = uv - \int v du$
 $\int_{a}^{2} t e^{t} dt = t e^{t} \Big|_{0}^{2} - \int_{0}^{2} e^{t} dt = [te^{t} - e^{t}]_{0}^{2}$
 $= e^{t} - e^{t} - (o - e^{0})$
 $= e^{t} + 1$

Ans:
$$\langle (e^2 + 1) 4, (e^2 + 1) 5, (e^2 + 1) 6 \rangle$$

Additional Examples

$$E X 3(a)$$
Let $\vec{v}(t) = \sin t \hat{1} + 2 \cos t \hat{j} + \cos t \hat{k}$
Compute $\frac{d}{dt}(\vec{v}(t^2))$
Sol:
 $\vec{v}'(t) = \langle \cos t , -2 \sin t , -\sin t \rangle$
 $\frac{d}{dt}(\vec{v}(t^2)) = \vec{v}'(t^2) \frac{d}{dt}(t^2) = \langle \cos(t^2), -2\sin(t^2), -\sin(t^2) \rangle$ 2t
 $= 2t \cos(t^2) \hat{i} - 4t \sin(t^2) \hat{j} - 2t \sin(t^2) \hat{k}$

$$E_{X} 5$$

$$\int \left(\frac{t}{\int t^{2} + 2} \hat{i} + e^{-3t} \hat{j} + (\sin 4t + 1) \hat{k} \right) dt$$

$$u = t^{1} + 2$$

$$du = 2t dt \Rightarrow \frac{1}{2} du = t dt$$

$$\int \frac{t}{\int t^{2} + 2} dt = \int \frac{1}{\int u} du = \int u^{-\frac{1}{2}} du = \frac{u^{\frac{1}{2}}}{(\frac{1}{2})} + C_{1} = 2 \sqrt{t^{1} + 2} + C_{1}$$

$$= \left\langle 2 \sqrt{t^{2} + 2} + C_{1}, -\frac{1}{3}e^{-3t} + C_{2}, -\frac{\cos(4t)}{4} + t + C_{3} \right\rangle$$